yingweiwo

Rilapladib (SB659032; GTPL7376)

Alias: SB-659032; GTPL 7376; D05728; SB659032; GTPL-7376; D-05728; SB 659032; GTPL7376;
Cat No.:V4623 Purity: ≥98%
Rilapladib (formerly aslo known as SB-659032 and GTPL-7376) is a novel, potent and selective lipoprotein-associated phospholipaseA2(Lp-PLA2)inhibitorwith anIC50of 230 pM,also a PAFR (Platelet Activating Factor Receptor) antagonist.
Rilapladib (SB659032; GTPL7376)
Rilapladib (SB659032; GTPL7376) Chemical Structure CAS No.: 412950-08-4
Product category: New7
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Rilapladib (formerly aslo known as SB-659032 and GTPL-7376) is a novel, potent and selective lipoprotein-associated phospholipase A2 (Lp-PLA2) inhibitor with an IC50 of 230 pM, also a PAFR (Platelet Activating Factor Receptor) antagonist.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
By lowering PAF levels and biological activity (as PAF kinase), rilapadib can decrease the manufacture of Lp-PLA2 and avert potential negative effects from Lp-PLA2. [2]
References

[1]. Platelet aggregation unchanged by lipoprotein-associated phospholipase A₂ inhibition: results from an in vitro study and two randomized phase I trials. PLoS One. 2014 Jan 27;9(1):e83094.

[2]. Computational Investigation of Darapladib and Rilapladib Binding to Platelet Activating Factor Receptor. A Possible Mechanism of Their Involvement in Atherosclerosis. International Journal of Chemistry; Vol. 6, No. 1; 2014.

Additional Infomation
Rilapladib is the third genomics-derived small molecule drug arising from the Human Genome Sciences-GlaxoSmithKline collaboration to enter clinical development. It is a lipoprotein-associated phospholipase A2 (Lp-PLA2) inhibitor. Lp-PLA2 is an enzyme associated with the formation of atherosclerotic plaques.
Drug Indication
Investigated for use/treatment in atherosclerosis and cardiovascular disorders.
Mechanism of Action
Rilapladib is a Lp-PLA2 inhibitor. Lp-PLA2 has been found to be enriched in the highly atherogenic lipoprotein subfraction of small dense LDL, which is susceptible to oxidative modification. Moreover, enzyme levels are increased in patients with hyperlipidaemia, stroke, Type 1 and Type 2 diabetes mellitus, as well as in post-menopausal women. As such, plasma Lp-PLA2 levels tend to be elevated in those individuals who are considered to be at risk of developing accelerated atherosclerosis and clinical cardiovascular events. Thus, inhibition of the Lp-PLA2 enzyme would be expected to stop the build up of this fatty streak (by inhibition of the formation of lysophosphatidylcholine), and so be useful in the treatment of atherosclerosis.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C40H38N3O3F5S
Molecular Weight
735.80502
Exact Mass
735.255
CAS #
412950-08-4
PubChem CID
9918381
Appearance
Light yellow to yellow solid powder
Density
1.36g/cm3
LogP
8.335
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
11
Rotatable Bond Count
12
Heavy Atom Count
52
Complexity
1200
Defined Atom Stereocenter Count
0
InChi Key
NNBGCSGCRSCFEA-UHFFFAOYSA-N
InChi Code
InChI=1S/C40H38F5N3O3S/c1-51-22-21-46-19-17-32(18-20-46)47(24-27-9-11-28(12-10-27)29-13-15-31(16-14-29)40(43,44)45)37(50)25-48-35-8-3-2-6-33(35)36(49)23-38(48)52-26-30-5-4-7-34(41)39(30)42/h2-16,23,32H,17-22,24-26H2,1H3
Chemical Name
2-[2-[(2,3-difluorophenyl)methylsulfanyl]-4-oxoquinolin-1-yl]-N-[1-(2-methoxyethyl)piperidin-4-yl]-N-[[4-[4-(trifluoromethyl)phenyl]phenyl]methyl]acetamide
Synonyms
SB-659032; GTPL 7376; D05728; SB659032; GTPL-7376; D-05728; SB 659032; GTPL7376;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~86.67 mg/mL (~117.79 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.25 mg/mL (3.06 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 22.5 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: 2.25 mg/mL (3.06 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 22.5 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.25 mg/mL (3.06 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 22.5 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.3590 mL 6.7952 mL 13.5905 mL
5 mM 0.2718 mL 1.3590 mL 2.7181 mL
10 mM 0.1359 mL 0.6795 mL 1.3590 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us