Reparixin L-lysine salt

Alias: DF 1681Y L-lysine salt; DF-1681Y L-lysine salt; DF1681Y L-lysine salt; Reparixin; Repertaxin; Repertaxin L-lysine salt
Cat No.:V3793 Purity: ≥98%
Reparixin L-lysine salt, the L-lysine salt form of reparixin, is a novel, potent small molecule weight allosteric inhibitor of chemokine receptor 1/2 (CXCR1/2) activation.
Reparixin L-lysine salt Chemical Structure CAS No.: 266359-93-7
Product category: CXCR
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes

Other Forms of Reparixin L-lysine salt:

  • Reparixin
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Reparixin L-lysine salt, the L-lysine salt form of reparixin, is a novel, potent small molecule weight allosteric inhibitor of chemokine receptor 1/2 (CXCR1/2) activation. It is the first medication candidate that is presently being studied in a clinical setting to prevent organ transplant recipients from suffering from ischemia/reperfusion injury. A computer-aided design program for dual allosteric CXCR1 and CXCR2 inhibitors has been developed using the binding mode of reparixin to CXCR1. Repertaxin and CXCR1 interact through a noncompetitive allosteric mode that locks CXCR1 in an inactive conformation to stop signaling, according to structural and biochemical data. In vivo, repertaxin effectively inhibits the recruitment of polymorphonuclear cells and shields organs from reperfusion injury. An overall tactic to control the activity of chemoattractant receptors is to target the Repertaxin interaction site of CXCR1.

Biological Activity I Assay Protocols (From Reference)
Targets
CXCR1 ( IC50 = 1 nM ); CXCR2 ( IC50 ∼ 100 nM ); CXCR1Ile43Val ( IC50 = 80 nM ); CXCR1wtwt ( IC50 = 5.6 nM )
ln Vitro

In vitro activity: Reparixin, as demonstrated in particular experiments on CXCR1/L1.2 and CXCR2/L1.2 transfected cells and on human PMNs, is a strong functional inhibitor of CXCL8-induced biological activities on human PMNs with a marked selectivity (about 400-fold) for CXCR1. Reparixin's effectiveness is considerably reduced in L1.2 cells that express the CXCR1 Ile43Val mutant (IC50 values for CXCR1 wt and CXCR1 Ile43Val, respectively, are 5.6 nM and 80 nM)[1]. Reparixin is an IL-8 receptor non-competitive allosteric inhibitor that inhibits CXCR1 activity 400 times more effectively than CXCR2[2].

ln Vivo
Rats and dogs are given intravenous [14C]-Reparixin L-lysine salt, and the pharmacokinetics and metabolism of the drug are studied. Reparixin exhibits >99% plasma protein binding in humans and laboratory animals up to 50 µg/mL, but this percentage decreases at higher concentrations. Vss is low (approximately 0.15 L/kg) in both rats and dogs, despite the fact that radioactivity diffuses quickly into rat tissues. Reparixin is nevertheless removed from rats (T1/2~0.5 h) more quickly than from dogs (T1/2~10 h)[3].
Enzyme Assay
Reparixin L-lysine salt is a new and powerful small molecular weight allosteric inhibitor of chemokine receptor 1/2 (CXCR1/2) activation. It is the L-lysine salt form of reparixin. Reparixin, as demonstrated in particular experiments on CXCR1/L1.2 and CXCR2/L1.2 transfected cells and on human PMNs, is a strong functional inhibitor of CXCL8-induced biological activities on human PMNs with a marked selectivity (about 400-fold) for CXCR1. Reparixin's effectiveness is considerably reduced in L1.2 cells that express the CXCR1 Ile43Val mutant (IC50 values for CXCR1 wt and CXCR1 Ile43Val, respectively, are 5.6 nM and 80 nM).
Cell Assay
L1.2 Cell suspension (1.5-3×106 cells/mL) is then seeded in triplicate in the upper compartment of the chemotactic chamber after being incubated for 15 min at 37°C with either vehicle or Reparixin (1 nM-1μM). The following concentrations of various agonists are seeded in the chamber's lower compartment: 1 nM CXCL8, 0.03 nM fMLP, 10 nM CXCL1, 2.5 nM CCL2, and 30 nM C5a. The chemotactic chamber is incubated for 45 minutes (human PMNs) or 2 hours (monocytes) at 37°C in air with 5% CO2. After the incubation period, the filter is taken out, cleaned, and stained. Five oil immersion fields are counted for each migration at a high magnification of 100×, following sample coding. Transwell filters with a pore size of 5 μm are used to assess L1.2 migration.
Animal Protocol
Rats and Dogs: The male Lister Hooded (partially pigmented) and female and male Sprague-Dawley CD (albino) rats are used. There are both male and female beagle dogs used, weighing between 8.3 and 9.4 kg when they are dosed, and they are around 15 months old. An equivalent amount of L-lysine that has been suitably radiodiluted with Reparixin L-lysine salt and repurified [14C]-Reparixin free acid are given intravenously to rats and dogs in a sterile isotonic (0.9%, w/v) saline solution. A bolus injection into the caudal vein administers a solution containing 9 mg/mL of the drug in total at a dose volume of 5 mL/kg (30 mg free Reparixin/kg) to rats. Dogs are given a bolus injection into a superficial forelimb vein containing a solution with a total drug concentration of 100 mg/mL at a dose volume of 0.5 mL/kg (33 mg free Reparixin/kg).
References

[1]. Design of noncompetitive interleukin-8 inhibitors acting on CXCR1 and CXCR2. J Med Chem. 2007 Aug 23;50(17):3984-4002.

[2]. Receptor binding mode and pharmacological characterization of a potent and selective dual CXCR1/CXCR2non-competitive allosteric inhibitor. Br J Pharmacol. 2012 Jan;165(2):436-54.

[3]. Species differences in the pharmacokinetics and metabolism of reparixin in rat and dog. Xenobiotica. 2006 May;36(5):419-40.

[4]. METHODS AND COMPOUNDS FOR THE TREATMENT OF BONE LOSS AND/OR PAIN. US 20170105971 A1.

[5]. Noncompetitive allosteric inhibitors of the inflammatory chemokine receptors CXCR1 and CXCR2: prevention of reperfusion injury. Proc Natl Acad Sci U S A. 2004 Aug 10;101(32):11791-6.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C₂₀H₃₅N₃O₅S
Molecular Weight
429.57
Exact Mass
489.25
Elemental Analysis
C, 53.97; H, 8.03; N, 8.58; O, 22.87; S, 6.55
CAS #
266359-93-7
Related CAS #
Reparixin; 266359-83-5
Appearance
Solid powder
SMILES
C[C@H](C1=CC=C(C=C1)CC(C)C)C(=O)NS(=O)(=O)C.C(CCN)C[C@@H](C(=O)O)N
InChi Key
JEJFWWFZAQBZMJ-GVKMLHTLSA-N
InChi Code
InChI=1S/C14H21NO3S.C6H14N2O2/c1-10(2)9-12-5-7-13(8-6-12)11(3)14(16)15-19(4,17)18;7-4-2-1-3-5(8)6(9)10/h5-8,10-11H,9H2,1-4H3,(H,15,16);5H,1-4,7-8H2,(H,9,10)/t11-;5-/m10/s1
Chemical Name
(2S)-2,6-diaminohexanoic acid;(2R)-2-[4-(2-methylpropyl)phenyl]-N-methylsulfonylpropanamide
Synonyms
DF 1681Y L-lysine salt; DF-1681Y L-lysine salt; DF1681Y L-lysine salt; Reparixin; Repertaxin; Repertaxin L-lysine salt
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~100 mg/mL (~232.8 mM)
Water: ≥ 200 mg/mL
Ethanol: < 1mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (5.82 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (5.82 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (5.82 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 40 mg/mL (93.12 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.3279 mL 11.6395 mL 23.2791 mL
5 mM 0.4656 mL 2.3279 mL 4.6558 mL
10 mM 0.2328 mL 1.1640 mL 2.3279 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT05496868 Recruiting Drug: Reparixin 600mg
Other: Matching Placebo
Acute Respiratory Distress
Syndrome, Adult
Dompé Farmaceutici S.p.A February 7, 2023 Phase 2
NCT05254990 Recruiting Drug: Reparixin
Other: Placebo
Infectious Pneumonia
Severe COVID-19
Dompé Farmaceutici S.p.A April 6, 2022 Phase 3
NCT05835466 Recruiting Drug: reparixin Myelofibrosis (PMF)
Post Essential Thrombocythemia
Myelofibrosis (ET-MF)
Icahn School of Medicine at
Mount Sinai
June 27, 2023 Phase 2
NCT04878055 Completed Drug: Reparixin
Other: Placebo
Pneumonia, Viral Dompé Farmaceutici S.p.A February 14, 2021 Phase 3
NCT02370238 Completed Drug: paclitaxel
Drug: Reparixin
Metastatic Breast Cancer Dompé Farmaceutici S.p.A July 29, 2015 Phase 2
Biological Data
Contact Us Back to top