yingweiwo

Rebaudioside A

Alias: Reb A
Cat No.:V2739 Purity: ≥98%
Rebaudioside A (Reb A) is a steviol glycoside isolated from the leaves of the Stevia rebaudiana plant.
Rebaudioside A
Rebaudioside A Chemical Structure CAS No.: 58543-16-1
Product category: Glucosidase
This product is for research use only, not for human use. We do not sell to patients.
Size Price
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Rebaudioside A (Reb A) is a steviol glycoside isolated from the leaves of the Stevia rebaudiana plant. This non-nutritive, natural sweetener is reported to be 250-450 times sweeter than sucrose and has potential for wide use in the US diet, and is used in Japan and South America today. The safety of Reb A has been investigated in several recently published studies and information on genotoxicity is described herein. Reb A was investigated for its potential to induce genotoxicity in three in vitro and two in vivo assays (conducted according to OECD guidelines). Reb A was non-mutagenic in an Ames test using Salmonella typhimurium and Escherichia coli, in a chromosomal aberration test using Chinese Hamster V79 cells and in a mouse lymphoma assay using L5178Y+/- cells, all studies were conducted at concentrations up to 5000 microg/ml, with and without metabolic activation. Also, Reb A was non-genotoxic in a bone marrow micronucleus test in mice at doses up 750 mg/kg bw and in an unscheduled DNA synthesis test in rats at 2000 mg/kg bw. These studies provide additional evidence that Reb A is not genotoxic at the doses tested and further support the generally recognized as safe determination of Reb A.

Biological Activity I Assay Protocols (From Reference)
ln Vitro

In vitro activity: Rebaudioside A is a steviol glycoside, α-glucosidase inhibitor with IC50 of 35.01 μg/ml. In vitro: rebaudioside A stimulat the insulin secretion from MIN6 cells in a dose- and glucose-dependent manner. In conclusion, the insulinotropic effect of rebaudioside A is mediated via inhibition of ATP-sensitive K+-channels and requires the presence of high glucose.


Kinase Assay: Rebaudioside A is a steviol glycoside, α-glucosidase inhibitor with IC50 of 35.01 μg/ml.


Cell Assay: In vitro: rebaudioside A stimulat the insulin secretion from MIN6 cells in a dose- and glucose-dependent manner. In conclusion, the insulinotropic effect of rebaudioside A is mediated via inhibition of ATP-sensitive K+-channels and requires the presence of high glucose.

ln Vivo
In vivo mouse micronucleus test at doses up to 750 mg/kg bw and an unscheduled DNA synthesis test in rats at doses up to 2000 mg/kg bw, rebaudioside A do not cause any genotoxic effects at any of the doses tested
Animal Protocol


ADME/Pharmacokinetics
Absorption, Distribution and Excretion
In a study designed to compare the absorption, plasma profiles, metabolism and excretion of (14)C-rebaudioside A, (14)C-stevioside and (14)C-steviol, single oral gavage doses were administered to intact and bile duct-cannulated male and female Sprague-Dawley rats. Doses of 5 mg (14)C-rebaudioside A/kg bw, 4.2 mg (14)C-stevioside/kg bw and 1.6 mg (14)C-steviol/kg bw were administered for the absorption, metabolism and excretion parts of the study; these doses were equal when converted to steviol. In order to determine the plasma profile, three rats per sex per substance were dosed and blood samples taken 0.5, 1, 4, 8, 12 and 24 hr after dosing. Peak plasma concentrations (Cmax) of the three test compounds were recorded at 8, 4 and 0.5 hr following dosing with (14)C-rebaudioside A, (14)C-stevioside and(14)C-steviol, respectively. In the main study, 27 animals per sex per compound were used, and blood samples were taken 0.25, 0.5, 1, 2, 4, 8, 24, 28 and 72 hr after dosing. Concentrations of radioactivity were found to decline between 15 min and 1 hr following dosing with (14)C-rebaudioside A and (14)C-stevioside and then increased from 1 to 2-8 hr before declining again. The Cmax and the area under the plasma concentration-time curve (AUC) of steviol were lower for rebaudioside A than for stevioside, indicating slightly greater formation of steviol from stevioside than from rebaudioside A. Following an oral dose of (14)C-steviol, the Cmax occurred in the first 15 min after administration and declined rapidly between 15 min and 1 hr. A small increase was observed at 2 hr, followed by a further decline. A single dose of test compound was administered to five intact rats per sex and five bile duct-cannulated rats per sex. For intact rats, urine and feces were collected regularly up to 96 hr after dosing. For each cannulated rat, bile, urine and faces were collected regularly up to 48 hr after dosing. Of the total dose in intact rats, 97-98% of (14)C-rebaudioside A and (14)C-stevioside and 90% of (14)C-steviol were recovered in the feces. For all compounds, the majority of the fecal radioactivity was excreted in the first 24 hr after dosing (64-89%), with a further 10-22% excreted in the feces between 24 and 48 hr. No radioactivity was detected in the carcasses of the animals given any of the test compounds at 96 hr after dosing. In cannulated rats, 70-80% of the (14)C-rebaudioside A and (14)C-stevioside dosage was excreted in the bile within 24 hr. The remaining dose was excreted in the feces (21-30%) and in the urine and cage washings (1-2%). The biliary excretion of steviol was more rapid, with 50-70% of the dose eliminated in the first 3 hr after dosing. Only 1-2% of the dose was excreted in the feces, with urine and cage washings accounting for another 1%. /Steviol glycosides/
Five male Sprague-Dawley rats were administered an intravenous injection of 8 mg isosteviol/kg bw. Blood samples were taken immediately prior to dosing and for up to 48 h after dosing. Urine samples were collected up to 24 hr following dosing. Plasma and urine samples were analysed for isosteviol using liquid chromatography/tandem mass spectrometry (LC-MS/MS). Plasma levels declined relatively quickly for 150 min, and then a much slower rate of clearance was observed. Low renal excretion was observed, and a terminal half-life of 406 +/- 31.7 min was calculated. This high terminal half-life was due to a large volume of distribution (suggesting extensive distribution outside of the plasma) and a relatively low rate of clearance. /Isosteviol/
Metabolism / Metabolites
Five male and five female healthy volunteers (aged 21-29 years) were provided with capsules containing 250 mg stevioside (97% stevioside, 2.8% steviolbioside, 0.2% rebaudioside A) to be taken 3 times per day for 3 days. Doses, expressed as steviol, were 299 mg/day or 4.60 mg/kg bw per day for females and 4.04 mg/kg bw per day for males. Twenty-four-hour urine samples were taken at enrollment and after dosing. Urine samples were analyzed for bound steviol and steviol glucuronide. Blood samples were also taken before and after dosing and analyzed for alkaline phosphatase, alanine aminotransferase (ALT), glutamic- pyruvic transaminase (GPT), creatine kinase and lactate dehydrogenase. No significant differences in electrolytes or markers of tissue damage were observed. The only metabolite detected in urine was steviol glucuronide. /It was/ concluded that because of its molecular size, the uptake of stevioside by the intestinal tract is likely to be very low and that stevioside is not degraded by enzymes in the gastrointestinal tract. However, bacteria found in the gut microflora are able to metabolize stevioside into free steviol, which is easily absorbed. /It is/ suggested that following degradation by the microflora, part of the steviol is absorbed by the colon and transported to the liver by portal blood, where it is conjugated with glucuronide, which is subsequently excreted in the urine. /Stevioside/
(14)C-rebaudioside A, (14)C-stevioside and (14)C-steviol were administered by gavage to intact and bile duct- cannulated male and female Sprague-Dawley rats, the fecal metabolite profiles were similar between the three test substances, with the predominant metabolite being steviol in all cases, with a smaller amount of steviol glucuronide being found, along with a very small percentage of unidentifiable metabolites. Steviol glucuronide was the predominant radioactive component in the bile, indicating that deconjugation occurs in the lower intestine. /Steviol glycosides/
The metabolism of stevioside (purity not stated) was investigated in human saliva, gastric secretions and fecal bacteria, as well as intestinal brush border membranes and intestinal microflora from rats, mice and hamsters. Stevioside was unchanged following incubation with human saliva and gastric secretions or with intestinal brush border membrane vesicles from rats, mice and hamsters. Microflora from rats, mice, hamsters and humans was found to metabolize stevioside to steviol. Steviol-16,17alpha-epoxide was found to be produced by human fecal bacteria, but this was converted back to steviol by further action of fecal bacteria. /Stevioside/
Biological Half-Life
Five male Sprague-Dawley rats were administered an intravenous injection of 8 mg isosteviol/kg bw. Blood samples were taken immediately prior to dosing and for up to 48 hr after dosing. ... A terminal half-life of 406 +/- 31.7 min was calculated. This high terminal half-life was due to a large volume of distribution (suggesting extensive distribution outside of the plasma) and a relatively low rate of clearance. /Isosteviol/
Toxicity/Toxicokinetics
Interactions
The aim of this study was to elucidate the anti-inflammatory and immunomodulatory activities of stevioside and its metabolite, steviol. Stevioside at 1 mM significantly suppressed lipopolysaccharide (LPS)-induced release of TNF-alpha and IL-1beta and slightly suppressed nitric oxide release in THP-1 cells without exerting any direct toxic effect, whereas steviol at 100 uM did not. Activation of IKKbeta and transcription factor NF-kappaB were suppressed by stevioside, as demonstrated by Western blotting. Furthermore, only stevioside induced TNF-alpha, IL-1beta, and nitric oxide release in unstimulated THP-1 cells. Release of TNF-alpha could be partially neutralized by anti-TLR4 antibody. This study suggested that stevioside attenuates synthesis of inflammatory mediators in LPS-stimulated THP-1 cells by interfering with the IKKbeta and NF-kappaB signaling pathway, and stevioside-induced TNF-alpha secretion is partially mediated through TLR4.
In a study to investigate chemoprevention, the effect of rebaudioside A (purity >99.5%) on azoxymethane-induced aberrant crypt foci was studied in groups of male F344 rats. One group of 16 rats was given three weekly subcutaneous injections of azoxymethane for 2 weeks and a diet containing 200 mg rebaudioside A/kg for 5 weeks, from 1 week before to 2 weeks after azoxymethane administration, and was then sacrificed. The dose expressed as steviol was 6.6 ug/kg bw per day. Other groups received a diet containing rebaudioside A with no azoxymethane injections (6 rats), a basal diet with no azoxymethane (6 rats) or azoxymethane injections and a basal diet only (16 rats). At the end of the study, the colons were removed from eight animals in the test group and from one in each of the control groups and examined for aberrant crypt foci. The colonic mucosa of the remaining animals from each group were pooled and examined for ornithine decarboxylase activity. Silver-stained nucleolar organizer region (AgNOR) protein count was also determined for each group. Both ornithine decarboxylase and AgNOR number are biomarkers for cell proliferation. The average body weights and mean liver weights of the animals receiving the test compound and the azoxymethane injections were significantly lower than those of the animals receiving azoxymethane alone. No signs of toxicity were observed, and food consumption was unaffected by treatment. There was a non-significant trend for rebaudioside A to reduce the number of azoxymethane-induced aberrant crypt foci, mucosal ornithine decarboxylase activity and the number of AgNORs. /Rebaudioside A/
Stevioside inhibits the action of atractyloside on energy metabolism in the isolated perfused rat liver. The effects of atractyloside on glycolysis, glycogenolysis, gluconeogenesis and oxygen uptake are decreased by stevioside. The concentration for half-maximal action is 0.5 mM. The site of the action is located on the outside of the cell. Possibly, stevioside affects the transport of atractyloside across the cell membrane. /Stevioside/
References
2009 Aug;47(8):1831-6;2017;23(11):1616-1622.
Additional Infomation
Rebaudioside A is a rebaudioside that is rubusoside in which the hydroxy groups at positions 3 and 4 of the beta-D-glucopyranosyloxy group at the 13alpha position have both been converted to the corresponding beta-D-glucopyranoside. It has a role as a sweetening agent. It is a beta-D-glucoside and a rebaudioside. It is functionally related to a rubusoside and a beta-D-Glcp-(1->2)-[beta-D-Glcp-(1->3)]-beta-D-Glcp.
Rebaudioside A is under investigation in clinical trial NCT03510624 (Acute Effect of Rebaudioside A on Glucose Excursion During an Oral Glucose Tolerance Test in Type 2 Diabetes Mellitus).
Rebaudioside A has been reported in Bos taurus and Stevia rebaudiana with data available.
See also: Stevia rebaudiuna Leaf (part of); Stevia rebaudiana, ext. (annotation moved to).
Therapeutic Uses
TRADITIONAL MEDICINE: A number of studies have suggested that, beside sweetness, stevioside along with related compounds, which include rebaudioside A (second most abundant component of S. rebaudiana leaf), steviol and isosteviol (metabolic components of stevioside) may also offer therapeutic benefits, as they have anti-hyperglycemic, anti-hypertensive, anti-inflammatory, anti-tumor, anti-diarrheal, diuretic, and immunomodulatory actions. It is of interest to note that their effects on plasma glucose level and blood pressure are only observed when these parameters are higher than normal. As steviol can interact with drug transporters, its role as a drug modulator is proposed...
/EXPL THER/ ...This study was to designed to evaluate the effect of stevioside in human hypertension. A multicentre, randomized, double-blind, placebo-controlled study was undertaken. This study group consisted of 106 Chinese hypertensive subjects with diastolic blood pressure between 95 and 110 mm Hg and ages ranging from 28 to 75 years with 60 subjects (men 34, women 26; mean +/- s.d., 54.1+/-3.8 years) allocated to active treatment and 46 (men 19, women 27; mean +/- s.d., 53.7+/-4.1 years) to placebo treatment. Each subject was given capsules containing stevioside (250 mg) or placebo thrice daily and followed-up at monthly intervals for 1 year. After 3 months, the systolic and diastolic blood pressure of the stevioside group decreased significantly (systolic: /from/166.0+/-9.4 /to/ 152.6+/-6.8 mmHg; diastolic: /from/ 104.7 +/- 5.2 /to/ 90.3+/-3.6 mm Hg, P<0.05), and the effect persisted during the whole year. Blood biochemistry parameters including lipid and glucose showed no significant changes. No significant adverse effect was observed and quality of life assessment showed no deterioration. This study shows that oral stevioside is a well tolerated and effective modality that may be considered as an alternative or supplementary therapy for patients with hypertension. /Stevioside/
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C₄₄H₇₀O₂₃
Molecular Weight
967.01
Exact Mass
966.43
CAS #
58543-16-1
Related CAS #
58543-16-1
PubChem CID
6918840
Appearance
White to off-white solid powder
Density
1.6±0.1 g/cm3
Boiling Point
1102.8±65.0 °C at 760 mmHg
Melting Point
242-244ºC
Flash Point
319.9±27.8 °C
Vapour Pressure
0.0±0.6 mmHg at 25°C
Index of Refraction
1.659
LogP
-1.13
Hydrogen Bond Donor Count
14
Hydrogen Bond Acceptor Count
23
Rotatable Bond Count
13
Heavy Atom Count
67
Complexity
1760
Defined Atom Stereocenter Count
26
SMILES
C[C@@]12CCC[C@@]([C@H]1CC[C@]34[C@H]2CC[C@](C3)(C(=C)C4)O[C@H]5[C@@H]([C@H]([C@@H]([C@H](O5)CO)O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O)O[C@H]7[C@@H]([C@H]([C@@H]([C@H](O7)CO)O)O)O)(C)C(=O)O[C@H]8[C@@H]([C@H]([C@@H]([C@H](O8)CO)O)O)O
InChi Key
HELXLJCILKEWJH-NCGAPWICSA-N
InChi Code
InChI=1S/C44H70O23/c1-17-11-43-9-5-22-41(2,7-4-8-42(22,3)40(59)66-38-33(58)30(55)26(51)20(14-47)62-38)23(43)6-10-44(17,16-43)67-39-35(65-37-32(57)29(54)25(50)19(13-46)61-37)34(27(52)21(15-48)63-39)64-36-31(56)28(53)24(49)18(12-45)60-36/h18-39,45-58H,1,4-16H2,2-3H3/t18-,19-,20-,21-,22+,23+,24-,25-,26-,27-,28+,29+,30+,31-,32-,33-,34+,35-,36+,37+,38+,39+,41-,42-,43-,44+/m1/s1
Chemical Name
[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (1R,4S,5R,9S,10R,13S)-13-[(2S,3R,4S,5R,6R)-5-hydroxy-6-(hydroxymethyl)-3,4-bis[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy]oxan-2-yl]oxy-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.01,10.04,9]hexadecane-5-carboxylate
Synonyms
Reb A
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO:>150 mg/mL
Water:N/A
Ethanol:N/A
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (2.59 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (2.59 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (2.59 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.0341 mL 5.1706 mL 10.3412 mL
5 mM 0.2068 mL 1.0341 mL 2.0682 mL
10 mM 0.1034 mL 0.5171 mL 1.0341 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us