Rasagiline

Cat No.:V13611 Purity: ≥98%
Rasagiline (R-AGN1135) is a potent, irreversible and selective inhibitor of mitochondrial MAO (monoamine oxidase).
Rasagiline Chemical Structure CAS No.: 136236-51-6
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
50mg
100mg
250mg
Other Sizes

Other Forms of Rasagiline:

  • Rasagiline Mesylate
  • Rasagiline 13C3 mesylate racemic
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Rasagiline (R-AGN1135) is a potent, irreversible and selective inhibitor of mitochondrial MAO (monoamine oxidase). The IC50 for inhibiting rat brain MAO B and MAO A is 4.43 nM and 412 nM, respectively. Rasagiline is a reagent for click chemistry. It has Alkyne groups and could undergo CuAAc (copper-catalyzed azide-alkyne cycloaddition reaction) with compounds bearing Azide groups.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
Following treatment with dexamethasone (10 µM), the proliferation rate of SH-SY5Y and 1242-MG was considerably boosted by rasagine (0.25 nM; 96 hours) [2].
ln Vivo
Under a transgenic model of multiple system atrophy, rasagiline is neuroprotective. Treatment with 2.5 mg/kg rasagiline improved motor impairments, according to motor behavior testing [3].
Cell Assay
Cell proliferation assay[2]
Cell Types: Neuroblastoma SH-SY5Y and Glioblastoma 1242-MG
Tested Concentrations: 0.25 nM
Incubation Duration: 96 hrs (hours)
Experimental Results: Increased cell proliferation rate of SH-SY5Y cells treated with dexamethasone About 60%. The cell proliferation rate of 1242-MG cells treated with dexamethasone increased by approximately 35%.
Animal Protocol
Animal/Disease Models: (PLP)-α-synuclein transgenic mice over 6 months old [3]
Doses: low dose (0.8 mg/kg bw) and high dose (2.5 mg/kg bw)
Route of Administration: every subcutaneous injection once every 24 hrs (hrs (hours)) for 1 time. The total time was 4 weeks (from day 1 to day 28 of the experiment).
Experimental Results: Low-dose treatment demonstrated no protective effect in the striatum, with neuronal numbers similar to those in placebo-treated MSA mice. High doses were associated with approximately 15% rescue of DARPP-32-immunoreactive striatal neurons. Low-dose treatment had no effect on nigral neuronal loss, but high-dose treatment completely protected nigral neurons in numbers comparable to healthy controls.
References
[1]. M B Youdim, et al. Rasagiline [N-propargyl-1R(+)-aminoindan], a selective and potent inhibitor of mitochondrial monoamine oxidase B. Br J Pharmacol. 2001 Jan;132(2):500-6.
[2]. Shawna Tazik, et al. Comparative neuroprotective effects of Rasagiline and aminoindan with selegiline on dexamethasone-induced brain cell apoptosis. Neurotox Res. 2009 Apr;15(3):284-90.
[3]. Nadia Stefanova, et al. Rasagiline is neuroprotective in a transgenic model of multiple system atrophy. Exp Neurol. 2008 Apr;210(2):421-7.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C12H13N
Molecular Weight
171.2383
CAS #
136236-51-6
Related CAS #
Rasagiline mesylate;161735-79-1;Rasagiline-13C3 mesylate racemic;1216757-55-9
SMILES
N([H])(C([H])([H])C#C[H])[C@@]1([H])C2=C([H])C([H])=C([H])C([H])=C2C([H])([H])C1([H])[H]
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~583.98 mM)
H2O : ≥ 5.88 mg/mL (~34.34 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (14.60 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (14.60 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (14.60 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 5.8398 mL 29.1988 mL 58.3976 mL
5 mM 1.1680 mL 5.8398 mL 11.6795 mL
10 mM 0.5840 mL 2.9199 mL 5.8398 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top