yingweiwo

Edoxaban impurity 4 (Edoxaban impurity D)

Alias: 480452-36-6; tert-Butyl ((1R,2S,5S)-2-((2-((5-chloropyridin-2-yl)amino)-2-oxoacetyl)amino)-5-(dimethylaminocarbonyl)cyclohexyl)carbamate; tert-Butyl [(1R,2S,5S)-2-[[2-[(5-chloropyridin-2-yl)amino]-2-oxoacetyl]amino]-5-(dimethylaminocarbonyl)cyclohexyl]carbamate; 836-116-0; Edoxaban impurity 4; tert-butyl (1R,2S,5S)-2-(2-(5-chloropyridin-2-ylamino)-2-oxoacetamido)-5-(dimethylcarbamoyl)cyclohexylcarbamate; tert-butyl N-[(1R,2S,5S)-2-[[2-[(5-chloropyridin-2-yl)amino]-2-oxoacetyl]amino]-5-(dimethylcarbamoyl)cyclohexyl]carbamate; (1R, 2S, 5S)-tert-Butyl Edoxaban;
Cat No.:V71918 Purity: ≥98%
Edoxaban impurity 4 is an impurity in Edoxaban.
Edoxaban impurity 4 (Edoxaban impurity D)
Edoxaban impurity 4 (Edoxaban impurity D) Chemical Structure CAS No.: 480452-36-6
Product category: Factor Xa
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Edoxaban impurity 4 is an impurity in Edoxaban. Edoxaban (DU-176) is a selective and orally bioactive factor Xa (FXa) inhibitor (antagonist) with Ki of 0.561 nM and 2.98 nM for free FXa and prothrombin, respectively. Edoxaban is an anticoagulant used to prevent strokes.
Biological Activity I Assay Protocols (From Reference)
Targets
Edoxaban impurity
References

[1]. DU-176b, a potent and orally active factor Xa inhibitor: in vitro and in vivo pharmacological profiles. J Thromb Haemost. 2008 Sep;6(9):1542-9.

[2]. The Effects of the Antiplatelet Agents, Aspirin and Naproxen, on Pharmacokinetics and Pharmacodynamics of the Anticoagulant Edoxaban, a Direct Factor Xa Inhibitor. J Cardiovasc Pharmacol. 2013 Apr 23.

Additional Infomation
Edoxaban is an oral factor Xa (FXa) inhibitor in clinical development for stroke prevention in patients with atrial fibrillation, an elderly population that frequently receives aspirin (ASA) and/or nonsteroidal anti-inflammatory drugs for concurrent illnesses. Three studies were conducted to evaluate the pharmacokinetic and pharmacodynamic interactions of edoxaban 60 mg coadministered with low-dose (100 mg) ASA, high-dose (325 mg) ASA, or naproxen (500 mg) in healthy subjects (n = 126). Template bleeding times (BT) were measured. Mean baseline (predose) BT for the 3 studies ranged from 4.72 to 6.13 minutes. Edoxaban administered alone increased BT by 21%-35% (4 hours post dose) from baseline. Concomitant administration of edoxaban with high-dose ASA, low-dose ASA, or naproxen increased BT approximately 2-fold showing an additive effect greater than either agent administered alone. Edoxaban pharmacokinetics were not affected by concomitant low-dose ASA or naproxen, but high-dose ASA increased systemic exposure of edoxaban by approximately 30%. The effects of edoxaban on prothrombin time, activated partial thromboplastin time, international normalized ratio, anti-FXa, and intrinsic FXa activity were not influenced by administration with ASA or naproxen. Inhibition of platelet aggregation by high-dose ASA, low-dose ASA, or naproxen was not affected by edoxaban. Concomitant administration of edoxaban and ASA or naproxen was well tolerated. [2]
Background: Factor Xa (FXa), a key serine protease that converts prothrombin to thrombin in the coagulation cascade, is a promising target enzyme for the prophylaxis and treatment of thromboembolic diseases. DU-176b is a novel antithrombotic agent that directly inhibits FXa activity. Objective: To evaluate the in vitro pharmacological profiles and in vivo effects of DU-176b in animal models of thrombosis and bleeding. Methods: In vitro, FXa inhibition, specificity and anticoagulant activities were examined. Oral absorption was studied in rats and cynomolgus monkeys. In vivo effects were studied in rat and rabbit models of venous thrombosis and tail bleeding. Results: DU-176b inhibited FXa with Ki values of 0.561 nm for free FXa, 2.98 nm for prothrombinase, and exhibited >10 000-fold selectivity for FXa. In human plasma, DU-176b doubled prothrombin time and activated partial thromboplastin time at concentrations of 0.256 and 0.508 microm, respectively. DU-176b did not impair platelet aggregation by ADP, collagen or U46619. DU-176b was highly absorbed in rats and monkeys, as demonstrated by more potent anti-Xa activity and higher drug concentration in plasma following oral administration than a prototype FXa inhibitor, DX-9065a. In vivo, DU-176b dose-dependently inhibited thrombus formation in rat and rabbit thrombosis models, although bleeding time in rats was not significantly prolonged at an antithrombotic dose. Conclusions: DU-176b is a more potent and selective FXa inhibitor with high oral bioavailability compared with its prototype, DX-9065a. DU-176b represents a promising new anticoagulant for the prophylaxis and treatment of thromboembolic diseases. [1]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C21H30CLN5O5
Molecular Weight
467.95
Exact Mass
467.193
CAS #
480452-36-6
PubChem CID
46911214
Appearance
White to off-white solid powder
Density
1.3±0.1 g/cm3
Index of Refraction
1.569
LogP
1.24
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
6
Heavy Atom Count
32
Complexity
711
Defined Atom Stereocenter Count
3
SMILES
CC(C)(C)OC(=O)N[C@@H]1C[C@H](CC[C@@H]1NC(=O)C(=O)NC2=NC=C(C=C2)Cl)C(=O)N(C)C
InChi Key
YJDLJNAWLBVIRF-AEGPPILISA-N
InChi Code
InChI=1S/C21H30ClN5O5/c1-21(2,3)32-20(31)25-15-10-12(19(30)27(4)5)6-8-14(15)24-17(28)18(29)26-16-9-7-13(22)11-23-16/h7,9,11-12,14-15H,6,8,10H2,1-5H3,(H,24,28)(H,25,31)(H,23,26,29)/t12-,14-,15+/m0/s1
Chemical Name
tert-butyl N-[(1R,2S,5S)-2-[[2-[(5-chloropyridin-2-yl)amino]-2-oxoacetyl]amino]-5-(dimethylcarbamoyl)cyclohexyl]carbamate
Synonyms
480452-36-6; tert-Butyl ((1R,2S,5S)-2-((2-((5-chloropyridin-2-yl)amino)-2-oxoacetyl)amino)-5-(dimethylaminocarbonyl)cyclohexyl)carbamate; tert-Butyl [(1R,2S,5S)-2-[[2-[(5-chloropyridin-2-yl)amino]-2-oxoacetyl]amino]-5-(dimethylaminocarbonyl)cyclohexyl]carbamate; 836-116-0; Edoxaban impurity 4; tert-butyl (1R,2S,5S)-2-(2-(5-chloropyridin-2-ylamino)-2-oxoacetamido)-5-(dimethylcarbamoyl)cyclohexylcarbamate; tert-butyl N-[(1R,2S,5S)-2-[[2-[(5-chloropyridin-2-yl)amino]-2-oxoacetyl]amino]-5-(dimethylcarbamoyl)cyclohexyl]carbamate; (1R, 2S, 5S)-tert-Butyl Edoxaban;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 50 mg/mL (106.85 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (5.34 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1370 mL 10.6849 mL 21.3698 mL
5 mM 0.4274 mL 2.1370 mL 4.2740 mL
10 mM 0.2137 mL 1.0685 mL 2.1370 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us