Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
5mg |
|
||
10mg |
|
||
Other Sizes |
|
ln Vitro |
For the treatment of metastatic castration-resistant prostate cancer (mCRPC), ralaniten triacetate (EPI-506) is used. It targets the N-terminal domain of the androgen receptor (AR). By attaching to the N-terminal domain (NTD), a novel target on the AR, EPI-506 is a first-in-class, highly-specific small molecule that directly inhibits AR transcriptional activity by preventing the AR from interacting with transcriptional proteins[2].
|
---|---|
References |
|
Additional Infomation |
Ralaniten Acetate is an orally bioavailable, small molecule inhibitor of the acetate form of ralaniten, a N-terminal domain (NTD) of the androgen receptor (AR), with potential antineoplastic activity. Upon oral administration of ralaniten acetate, ralaniten specifically binds to the NTD of AR, thereby inhibiting both AR activation and the AR-mediated signaling pathway. This inhibits cell growth in AR-overexpressing tumor cells. AR is overexpressed in prostate cancers and is involved in proliferation, survival and chemoresistance of tumor cells.
|
Molecular Formula |
C27H33CLO8
|
---|---|
Exact Mass |
520.186
|
CAS # |
1637573-04-6
|
Related CAS # |
Ralaniten;1203490-23-6
|
PubChem CID |
86278934
|
Appearance |
Colorless to light yellow liquid
|
LogP |
5.1
|
Hydrogen Bond Donor Count |
0
|
Hydrogen Bond Acceptor Count |
8
|
Rotatable Bond Count |
16
|
Heavy Atom Count |
36
|
Complexity |
696
|
Defined Atom Stereocenter Count |
2
|
SMILES |
CC(=O)OC[C@H](COC1=CC=C(C=C1)C(C)(C)C2=CC=C(C=C2)OC[C@@H](CCl)OC(=O)C)OC(=O)C
|
InChi Key |
HGHVYYKTOXUQNT-CLJLJLNGSA-N
|
InChi Code |
InChI=1S/C27H33ClO8/c1-18(29)32-16-26(36-20(3)31)17-34-24-12-8-22(9-13-24)27(4,5)21-6-10-23(11-7-21)33-15-25(14-28)35-19(2)30/h6-13,25-26H,14-17H2,1-5H3/t25-,26-/m1/s1
|
Chemical Name |
[(2S)-2-acetyloxy-3-[4-[2-[4-[(2S)-2-acetyloxy-3-chloropropoxy]phenyl]propan-2-yl]phenoxy]propyl] acetate
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO: 100 mg/mL (191.94 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: 2.5 mg/mL (4.80 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: 2.5 mg/mL (4.80 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.5 mg/mL (4.80 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.