Piroxicam (CP-16171)

Alias: CP 16171; Piroxicam; Feldene; Pyroxycam; Roxicam; BAXO; CP16171; CP-16171
Cat No.:V1055 Purity: ≥98%
Piroxicam (formerly BAXO; CP16171; CP-16171; Feldene; Pyroxycam; Roxicam), an approved non-steroidal anti-inflammatory drug (NSAID), is a potent and non-selective COX inhibitor with potential anti-inflammatory activity.
Piroxicam (CP-16171) Chemical Structure CAS No.: 36322-90-4
Product category: COX
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1g
2g
5g
10g
25g
50g
100g
Other Sizes

Other Forms of Piroxicam (CP-16171):

  • Piroxicam D3
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Piroxicam (formerly BAXO; CP16171; CP-16171; Feldene; Pyroxycam; Roxicam), an approved non-steroidal anti-inflammatory drug (NSAID), is a potent and non-selective COX inhibitor with potential anti-inflammatory activity. It was approved for the treatment of rheumatoid and osteoarthritis.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
CP-16171, piroxicam, is a non-steroidal anti-inflammatory medication that inhibits COX. Its IC50 values for human monocyte COX-1 and COX-2 are 47 and 25 μM, respectively[1]. Piroxicam (CP-16171) (167, 333, 500 μM) reduces the T24 and 5637 cell populations. When coupled with 0.05 μM carboplatin, piroxicam (CP-16171) (500 μM) dramatically lowers the viability of T24 and 5637 cells as well. Additionally, the combination prevents booth cells from expressing Ki-67[3].
ln Vivo
In 12 out of 18 dogs, piroxicam (CP-16171) (0.3 mg/kg qd 24-h po) lowers the volume of the tumor. This action is caused by apoptosis induction and a decrease in the concentration of basic fibroblast growth factor in the urine[2].
Animal Protocol
0.3 mg/kg
Dogs undergo tumor staging, including thoracic and abdominal radiography, cystography, ultrasonography, and cystoscopy (with collection of tissue samples) before treatment and after 4 weeks of Piroxicam (CP-16171) (0.3 mg/kg qd 24-h p. o.) treatment. Dogs receive no other cancer treatment during the 4 weeks of Piroxicam (CP-16171) treatment. Tissue samples are immediately frozen in liquid nitrogen for PGE2 analysis or fixed in 10% neutral buffered formalin for immunohistochemical examination. Urine is also collected before and after Piroxicam treatment, aliquoted, and then stored at 80°C until analyzed
References
[1]. Kato M, et al. Cyclooxygenase-1 and cyclooxygenase-2 selectivity of non-steroidal anti-inflammatory drugs: investigation using human peripheral monocytes. J Pharm Pharmacol. 2001 Dec;53(12):1679-85.
[2]. Mohammed SI, et al. Effects of the cyclooxygenase inhibitor, piroxicam, on tumor response, apoptosis, and angiogenesis in a canine model of human invasive urinary bladder cancer. Cancer Res. 2002 Jan 15;62(2):356-8.
[3]. Silva J, et al. Synergistic Effect of Carboplatin and Piroxicam on Two Bladder Cancer Cell Lines. Anticancer Res. 2017 Apr;37(4):1737-1745
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C15H13N3O4S
Molecular Weight
331.35
CAS #
36322-90-4
Related CAS #
Piroxicam-d3;942047-64-5;Piroxicam-d4
SMILES
S1(C2=C([H])C([H])=C([H])C([H])=C2C(=C(C(N([H])C2=C([H])C([H])=C([H])C([H])=N2)=O)N1C([H])([H])[H])O[H])(=O)=O
Synonyms
CP 16171; Piroxicam; Feldene; Pyroxycam; Roxicam; BAXO; CP16171; CP-16171
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO:66 mg/mL (199.2 mM)
Water:<1 mg/mL
Ethanol:<1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (7.54 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (7.54 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (7.54 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.0180 mL 15.0898 mL 30.1796 mL
5 mM 0.6036 mL 3.0180 mL 6.0359 mL
10 mM 0.3018 mL 1.5090 mL 3.0180 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top