yingweiwo

PD-118057

Alias: PD118057; PD-118057; PD-118057; 313674-97-4; 2-[[4-[2-(3,4-Dichlorophenyl)ethyl]phenyl]amino]benzoic acid; 2-[4-[2-(3,4-dichlorophenyl)ethyl]anilino]benzoic acid; 2-((4-(3,4-dichlorophenethyl)phenyl)amino)benzoic acid; 2-({4-[2-(3,4-DICHLOROPHENYL)ETHYL]PHENYL}AMINO)BENZOIC ACID; ZCQOSCDABPVAFB-UHFFFAOYSA-N; PD 118057
Cat No.:V4805 Purity: ≥98%
PD-118057 (PD118057) is a novel and potent hERG (Human ether-a-go-go-related gene) channel enhancer.
PD-118057
PD-118057 Chemical Structure CAS No.: 313674-97-4
Product category: New7
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
25mg
50mg
100mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

PD-118057 (PD118057) is a novel and potent hERG (Human ether-a-go-go-related gene) channel enhancer. Human ether-a-go-go-related gene 1 (hERG1) K(+) channels mediate repolarization of cardiac action potentials.

Biological Activity I Assay Protocols (From Reference)
Targets
hERG channel; Human ether-a-go-go-related gene channel
ln Vitro
PD-118057 (3 μM and 10 μM) specifically enhanced hERG currents and inhibited action potential duration in the ventricular myocardium of acutely isolated guinea pig cardiomyocytes [2-3]. With no change in the "hump" shape of the IKr current recorded by action potential clamp, PD-118057 (10 μM) reversed the current suppression caused by Dof and Mox and only marginally enhanced the peak value of the suppressed current [3].
Enzyme Assay
IN THIS STUDY, WE INVESTIGATED: (a) the effect of PD-118057 and thapsigargin on the current amplitudes of WT-hERG and WT/E637K-hERG channels; (b) the effect of PD-118057 and thapsigargin on the biophysical properties of WT-hERG and WT/E637K-hERG channels; (c) whether drug treatment can rescue channel processing and trafficking defects of the WT/E637K-hERG mutant. Methods: The whole-cell Patch-clamp technique was used to assess the effect of PD-118057 and thapsigargin on the electrophysiological characteristics of the rapidly activating delayed rectifier K(+) current (Ikr) of the hERG protein channel. Western blot was done to investigate pharmacological rescue on hERG protein channel function. Results: In our study, PD-118057 was shown to significantly enhance both the maximum current amplitude and tail current amplitude, but did not alter the gating and kinetic properties of the WT-hERG channel, with the exception of accelerating steady-state inactivation. Additionally, thapsigargin shows a similar result as PD-118057 for the WT-hERG channel, but with the exception of attenuating steady-state inactivation. However, for the WT/E637K-hERG channel, PD-118057 had no effect on either the current or on the gating and kinetic properties. Furthermore, thapsigargin treatment did not alter the current or the gating and kinetic properties of the WT/E637K-hERG channel, with the exception of opening at more positive voltages. Conclusion: Our findings illustrate that neither PD-118057 nor thapsigargin play a role in correcting the dominant-negative effect of the E637K-hERG mutant[1].
Cell Assay
Cell Lines and Drug Exposure[1]
Human embryonic kidney 293 (HEK293) cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum in 5% CO2 incubator at 37°C. HEK293 cells were transiently transfected with 3.2 µg of WT-hERG and/or 3.2 µg of E637K-hERG plasmids using Lipofectamine™ 2000 according to the manufacturer’s instruction. 0.8 µg of pRK5-GFP plasmid was co-transfected to monitor transfection efficacy. Thapsigargin (1 mmol/L stock dissolved in DMSO), PD-118057 (5 mmol/L stock dissolved in DMSO) were added to the culture media for different time periods before analyzing. Final DMSO concentrations in medium was <0.1%.Incubating HEK293 cells expressing WT-hERG, WT/E637K-hERG or E637K-hERG overnight in 0.1% DMSO had no effect on IhERG or complex glycosylation.
References

[1]. Pharmacologic Approach to Defective Protein Trafficking in the E637K-hERG Mutant with PD-118057 and Thapsigargin. PLoS One. 2013 Jun 19;8(6):e65481.

[2]. Pharmacological and biophysical isolation of K+ currents encoded by ether-à-go-go-related genes in murine hepatic portal vein smooth muscle cells. Am J Physiol Cell Physiol. 2007 Jan;292(1):C468-76.

[3]. Effect of PD-118057attenuates hypokalaemia or drug-induced prolongation of action potential duration in guinea pig ventricular myocytes. 2014,29(05):536-538.

Additional Infomation
Previous studies have shown that murine portal vein myocytes express ether-à-go-go related genes (ERGs) and exhibit distinctive currents when recorded under symmetrical K(+) conditions. The aim of the present study was to characterize ERG channel currents evoked from a negative holding potential under conditions more pertinent to a physiological scenario to assess the possible functional impact of this conductance. Currents were recorded with ruptured or perforated patch variants of the whole cell technique from a holding potential of -60 mV. Application of three structurally distinct and selective ERG channel blockers, E-4031, dofetilide, and the peptide toxin BeKM-1, all inhibited a significant proportion of the outward current and abolished inward currents with distinctive "hooked" kinetics recorded on repolarization. Dofetilide-sensitive currents at negative potentials evoked by depolarization to +40 mV had a voltage-dependent time to peak and rate of decay characteristic of ERG channels. Application of the novel ERG channel activator PD-118057 (1-10 microM) markedly enhanced the hooked inward currents evoked by membrane depolarization and hyperpolarized the resting membrane potential recorded by current clamp and the perforated patch configuration by approximately 20 mV. In contrast, ERG channel blockade by dofetilide (1 microM) depolarized the resting membrane potential by approximately 8 mV. These data are the first record of ERG channel currents in smooth muscle cells under quasi-physiological conditions that suggest that ERG channels contribute to the resting membrane potential in these cells.[2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C21H17CL2NO2
Molecular Weight
386.271183729172
Exact Mass
385.064
Elemental Analysis
C, 65.30; H, 4.44; Cl, 18.35; N, 3.63; O, 8.28
CAS #
313674-97-4
PubChem CID
9864959
Appearance
Off-white to light yellow solid powder
Density
1.353g/cm3
Boiling Point
527ºC at 760 mmHg
Flash Point
272.52ºC
Index of Refraction
1.668
LogP
6.293
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
6
Heavy Atom Count
26
Complexity
453
Defined Atom Stereocenter Count
0
InChi Key
ZCQOSCDABPVAFB-UHFFFAOYSA-N
InChi Code
InChI=1S/C21H17Cl2NO2/c22-18-12-9-15(13-19(18)23)6-5-14-7-10-16(11-8-14)24-20-4-2-1-3-17(20)21(25)26/h1-4,7-13,24H,5-6H2,(H,25,26)
Chemical Name
2-[4-[2-(3,4-Dichlorophenyl)ethyl]anilino]benzoic acid
Synonyms
PD118057; PD-118057; PD-118057; 313674-97-4; 2-[[4-[2-(3,4-Dichlorophenyl)ethyl]phenyl]amino]benzoic acid; 2-[4-[2-(3,4-dichlorophenyl)ethyl]anilino]benzoic acid; 2-((4-(3,4-dichlorophenethyl)phenyl)amino)benzoic acid; 2-({4-[2-(3,4-DICHLOROPHENYL)ETHYL]PHENYL}AMINO)BENZOIC ACID; ZCQOSCDABPVAFB-UHFFFAOYSA-N; PD 118057
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~258.89 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (6.47 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.5889 mL 12.9443 mL 25.8886 mL
5 mM 0.5178 mL 2.5889 mL 5.1777 mL
10 mM 0.2589 mL 1.2944 mL 2.5889 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us