Oxytetracycline

Cat No.:V6322 Purity: ≥98%
Oxytetracycline (Lenocycline; Oxyterracine; Oxyterracyne; Tarosin; Oxymykoin) is a naturally occurring tetracycline class of antibiotic extracted from the actinomycete STREPTOMYCES rimosus with a broad-spectrum of antibacterial effects.
Oxytetracycline Chemical Structure CAS No.: 79-57-2
Product category: ATPase
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
500mg
1g
2g
5g
10g
25g
Other Sizes

Other Forms of Oxytetracycline:

  • Oxytetracycline Hydrochloride
  • Oxytetracycline dihydrate (oxytetracycline dihydrate)
  • Oxytetracycline calcium
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Oxytetracycline (Lenocycline; Oxyterracine; Oxyterracyne; Tarosin; Oxymykoin) is a naturally occurring tetracycline class of antibiotic extracted from the actinomycete STREPTOMYCES rimosus with a broad-spectrum of antibacterial effects. It has been used in a wide variety of clinical conditions for Gram-negative and Gram-positive bacteria. Oxytetracycline works by interfering with the ability of bacteria to produce essential proteins. Without these proteins, the bacteria cannot grow, multiply and increase in numbers. Oxytetracycline therefore stops the spread of the infection and the remaining bacteria are killed by the immune system or eventually die. Oxytetracycline is a broad-spectrum antibiotic, active against a wide variety of bacteria. However, some strains of bacteria have developed resistance to this antibiotic, which has reduced its effectiveness for treating some types of infections.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Oxytetracycline is an essential member of the bacterial aromatic polyketide family and a class of natural compounds with different structures. Oxytetracycline is synthesized by type II polyketide synthase, which generates a poly-β-ketone backbone through sequential decarboxylation condensation of malonyl-CoA extension units, which is then processed by cyclases, oxygenases, transferases, and other tailoring enzymes modification[2].
ln Vivo
In different animals, oxytetracycline therapeutic doses (82.8 mg/kg body weight to 1% body weight/day) had different effects after 10 days. Morone Chrysops had a higher relative liver weight when given oxytetracycline. There are limits of 100 μg/kg for oxytetracycline in milk and muscle, 200 μg in eggs, 300 μg in liver, and 600 μg in kidneys. Fish receiving therapeutic feed containing 35–75 mg of oxytetracycline (OTC) per kilogram of biomass are given the medication on day 1 and for a duration of 7–14 days [1].
References
[1]. Elia, A.C., et al., Transferability of oxytetracycline (OTC) from feed to carp muscle and evaluation of the antibiotic effects on antioxidant systems in liver and kidney. Fish Physiol Biochem, 2014.
[2]. Pickens LB, et al. Oxytetracycline biosynthesis. J Biol Chem. 2010 Sep 3;285(36):27509-15.
[3]. Oguz Guvenmez, et al. A New Treatment Method for Herpes Simplex Virus Type 1-related Skin Lesions. Scientific & Academic. 2019; 8(1): 6-8.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H24N2O9
Molecular Weight
460.4340
CAS #
79-57-2
Related CAS #
Oxytetracycline hydrochloride;2058-46-0;Oxytetracycline dihydrate;6153-64-6;Oxytetracycline calcium;7179-50-2
SMILES
O([H])[C@@]1([H])[C@@]2([H])C(=C(C3C(=C([H])C([H])=C([H])C=3[C@@]2(C([H])([H])[H])O[H])O[H])O[H])C([C@@]2(C(=C(C(N([H])[H])=O)C([C@]([H])([C@]12[H])N(C([H])([H])[H])C([H])([H])[H])=O)O[H])O[H])=O
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ≥ 50 mg/mL (~108.59 mM)
H2O : ~0.67 mg/mL (~1.46 mM)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1719 mL 10.8594 mL 21.7188 mL
5 mM 0.4344 mL 2.1719 mL 4.3438 mL
10 mM 0.2172 mL 1.0859 mL 2.1719 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top