Nonivamide

Alias: Nonivamide
Cat No.:V15471 Purity: ≥98%
Nonivamide is an agonist with a 4d-EC50 of 5.1 mg/L in static toxicity assays.
Nonivamide Chemical Structure CAS No.: 2444-46-4
Product category: TRP Channel
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
50g
100g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description
Nonivamide is an agonist with a 4d-EC50 of 5.1 mg/L in static toxicity assays.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
Nonivamide is a synthetic capsaicin derivative that has strong antifouling properties. For capsaicin, the 4d-EC50 values for Pseudomonas putida, Lake Erie bacteria, and Vibrio natrigeni were 5.5±0.5 mg/L, 23±2 mg/L, and 6.9±0.2 mg/L and 15.6±0.4 mg/L, and V. parahaemolyticus, respectively, in static toxicity experiments. The 1 mg/L Nonivamide treatment group showed significant growth inhibition for 4 days (p<0.01), with an EC50 value of 5.1 mg/L for the 4 day-EC50[1]. Treatment with nonivamide releases calcium from the endoplasmic reticulum (ER) and modifies transcription of growth arrest and DNA damage-induced transcript 3 (GADD153), GADD45α, GRP78/BiP, ATF3, CCND1, and CCNG2) in a way characteristic of usual ER stress. After pretreating cells with 2.5 μM thapsigargin for 5 min, ER calcium flow was measured by adding 2.5 μM Nonivamide. Calcium from ER reserves was released when 2.5 μM Nonivamide was given to TRPV1-overexpressing cells, leading to a notable rise in cytosolic calcium. After 24 hours, treating TRPV1-overexpressing cells with 1 μM Nonivamide led to a roughly 50% reduction in cell viability. Additionally, BEAS-2B cells treated with 100 and 200 μM Nonivamide displayed an increase in GADD153 mRNA and protein expression as well as alterations in the relative amount of EIF2α-P [2]. At every examined concentration, the effects of nonivamide treatment on lipid buildup were identical to those following CAP treatment in terms of reduction. Nonivamide treatment decreased lipid accumulation by 5.34±1.03% (P<0.05) at 0.01 µM and by 10.4±2.47% (P<0.001) at 1 µM in comparison to untreated control cells [3].
References
[1]. Zhou J, et al. Toxic effects of environment-friendly antifoulant Nonivamide on Phaeodactylum tricornutum. Environ Toxicol Chem. 2013 Apr;32(4):802-9.
[2]. Thomas KC, et al. Transient receptor potential vanilloid 1 agonists cause endoplasmic reticulum stress and cell death in human lung cells. J Pharmacol Exp Ther. 2007 Jun;321(3):830-8.
[3]. Rohm B, et al. Nonivamide enhances miRNA let-7d expression and decreases adipogenesis PPARγ expression in 3T3-L1 cells. J Cell Biochem. 2015 Jun;116(6):1153-63
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C18H27NO3
Molecular Weight
305.4119
CAS #
2444-46-4
SMILES
O=C(C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C(/[H])=C(\[H])/C([H])(C([H])([H])[H])C([H])([H])[H])N([H])C([H])([H])C1C([H])=C([H])C(=C(C=1[H])OC([H])([H])[H])O[H]
Synonyms
Nonivamide
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~340.83 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (8.52 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (8.52 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (8.52 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.2743 mL 16.3714 mL 32.7429 mL
5 mM 0.6549 mL 3.2743 mL 6.5486 mL
10 mM 0.3274 mL 1.6371 mL 3.2743 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top