ND-630

Alias: NDI-010976; NDI 010976; NDI010976; ND-630; ND 630; ND630; GS-0976; GS0976; GS 0976; firsocostat
Cat No.:V2798 Purity: ≥98%
Firsocostat (formerly also known as ND-630; GS-0976; NDI-010976; ND630) is a novel and potent inhibitor of ACC (acetyl-CoA carboxylase) with IC50 values of 2.1 and 6.1 nM for human ACC1 and ACC2, respectively.
ND-630 Chemical Structure CAS No.: 1434635-54-7
Product category: Acetyl-CoA Carboxylase
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes

Other Forms of ND-630:

Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Purity: ≥98%

Product Description

Firsocostat (formerly also known as ND-630; GS-0976; NDI-010976; ND630) is a novel and potent inhibitor of ACC (acetyl-CoA carboxylase) with IC50 values of 2.1 and 6.1 nM for human ACC1 and ACC2, respectively. As a potent allosteric protein-protein interaction inhibitor, ND-630 interacts within the ACC phosphopeptide acceptor and dimerization site to prevent dimerization and inhibits the enzymatic activity of both ACC isozymes, reduces fatty acid synthesis and stimulates fatty acid oxidation in cultured cells and in animals, and exhibits favorable drug-like properties. When administered chronically to rats with diet-induced obesity, ND-630 reduces hepatic steatosis, improves insulin sensitivity, reduces weight gain without affecting food intake, and favorably affects dyslipidemia. When administered chronically to Zucker diabetic fatty rats, ND-630 reduces hepatic steatosis, improves glucose-stimulated insulin secretion, and reduces hemoglobin A1c (0.9% reduction). Together, these data suggest that ACC inhibition by ND-630 may be useful in treating a variety of metabolic disorders, including metabolic syndrome, type 2 diabetes mellitus, and fatty liver disease.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
hACC1 (IC50=2.1±0.2 nM) and hACC2 (IC50=6.1±0.8 nM) are inhibited by firsocostat (ND-630). Reversible and extremely ACC-specific suppression exists. By interfering with the phosphopeptide receptor and dimerization sites of the enzyme, firsocostat inhibits the activity of ACC. With an EC50 of 66 nM, firsocostat inhibits the synthesis of fatty acids in HepG2 cells without altering the number of cells overall, the concentration of cellular proteins, or the binding of acetate and cholesterol [1].
ln Vivo
When Firsocostat (ND-630) is given to diet-induced obese rats over an extended period of time, it improves insulin sensitivity, decreases hepatic steatosis, decreases weight gain without changing food intake, and has positive effects on dyslipidemia. Firsocostat Zucker Long-term Firsocostat administration decreased hepatic steatosis, enhanced insulin secretion in response to glucose, and decreased hemoglobin A1c (by 0.9%) in diabetic obese rats. In humans and rats, Firsocostat binds to plasma proteins at rates of 98.5% and 98.6%, respectively. The Sprague-Dawley male rats used in the pharmacokinetic evaluation of Firsocostat showed a plasma t1/2 of 4.5 hours, a bioavailability of 37%, and a clearance of 33 mL/min/kg. The volume of distribution was found to be 1.9 L/kg, and the maximum oral plasma concentration time was observed to be 0.25 hours[1].
Animal Protocol
ND-630 is formulated in aqueous saline solution containing 1% Tween 80 and 0.5% methyl cellulose; 0.5, 1.5, 5 mg/kg; Oral gavage b.i.d. for 37 d.
Zucker diabetic fatty rats
References
[1]. Harriman G, et al. Acetyl-CoA carboxylase inhibition by ND-630 reduces hepatic steatosis, improves insulin sensitivity, and modulates dyslipidemia in rats. Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):E1796-805
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C28H31N3O8S
Molecular Weight
569.63
CAS #
1434635-54-7
Related CAS #
Firsocostat (S enantiomer);2128714-16-7
SMILES
O=C(O)C(C)(C)N(C(N(C[C@@H](C1=CC=CC=C1OC)OC2CCOCC2)C3=C4C(C)=C(C5=NC=CO5)S3)=O)C4=O
Chemical Name
(R)-2-(1-(2-(2-methoxyphenyl)-2-((tetrahydro-2H-pyran-4-yl)oxy)ethyl)-5-methyl-6-(oxazol-2-yl)-2,4-dioxo-1,4-dihydrothieno[2,3-d]pyrimidin-3(2H)-yl)-2-methylpropanoic acid
Synonyms
NDI-010976; NDI 010976; NDI010976; ND-630; ND 630; ND630; GS-0976; GS0976; GS 0976; firsocostat
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO:> 50mg/mL
Water:< 1mg/mL
Ethanol:< 1mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: 0.5 mg/mL (0.88 mM) in 1% DMSO + 99% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.7555 mL 8.7776 mL 17.5553 mL
5 mM 0.3511 mL 1.7555 mL 3.5111 mL
10 mM 0.1756 mL 0.8778 mL 1.7555 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
Contact Us Back to top