Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
Other Sizes |
|
N-Desethyl Sunitinib (SU-11662) is a major metabolite of sunitinib which is a potent, ATP-competitive VEGFR, PDGFRβ and KIT inhibitor with Kis of 2, 9, 17, 8 and 4 nM for VEGFR -1, -2, -3, PDGFRβ and KIT, respectively.
Targets |
Sunitinib metabolite; VEGFR; PDGFRβ; KIT
|
---|---|
ln Vitro |
Moreover, sunitinib efficiently inhibits FLT-3 and Kit[1]. With a Ki of 8 nM for PDGFRβ and 9 nM for VEGFR2 (Flk1), sunitinib is a strong ATP competitive inhibitor. Compared to FGFR-1, EGFR, Cdk2, Met, and IGFR, it is ten times more selective for VEGFR2 and PDGFR. above. 1. Src and Abl. Sunitinib suppresses VEGF-dependent VEGFR2 phosphorylation and PDGF-dependent PDGFRβ phosphorylation with IC50 values of 10 nM and 10 nM, respectively, in serum-starved NIH-3T3 cells expressing VEGFR2 or PDGFRβ. With an IC50 of 40 nM for VEGF, sunitinib prevents serum-starved HUVEC from proliferating, and with an IC50 of 39 nM and 69 nM for PDGF, it prevents NIH-3T3 cells overexpressing PDGFRβ or PDGFRβ from proliferating [2]. For wild-type FLT3, FLT3-ITD, and FLT3-Asp835, sunitinib inhibits phosphorylation with IC50 values of 250 nM, 50 nM, and 30 nM, respectively. Sunitinib causes apoptosis in MV4;11 and OC1-AML5 cells in a dose-dependent manner and suppresses their growth with IC50 values of 8 nM and 14 nM, respectively [3].
|
ln Vivo |
Across a variety of tumor xenograft models, such as HT-29, A431, Colo205, H-460, SF763T, C6, A375, or MDA-dependent antitumor activity of MB-435, sunitinib (20–80 mg/kg/day) demonstrates a broad and effective dosing range that is consistent with a significant and selective inhibition of VEGFR2 or PDGFR phosphorylation and signaling in vivo. In six out of eight mice, sunitinib (80 mg/kg/day) for 21 days led to total tumor shrinkage; no tumor regrowth occurred over the 110-day observation period following the conclusion of treatment. For tumours that did not fully regress during the first round of treatment, a second round of sunitinib remains effective. Treatment with sunitinib greatly decreased tumor MVD, with SF763T glioma tumors showing a 40% reduction. Although there was no decrease in tumor size, SU11248 therapy totally prevented further tumor growth in luciferase-expressing PC-3M xenografts [2]. In the FLT3-ITD bone marrow transplant paradigm, sunitinib therapy (20 mg/kg/day) effectively decreased the growth of subcutaneous MV4;11 (FLT3-ITD) xenografts and extended survival [3].
|
Enzyme Assay |
IC50 values for Sunitinib against VEGFR2 (Flk-1) and PDGFRβ are determined using glutathione S-transferase fusion proteins containing the complete cytoplasmic domain of the RTK. Biochemical tyrosine kinase assays to quantitate the trans-phosphorylation activity of VEGFR2 (Flk-1) and PDGFRβ are performed in 96-well microtiter plates precoated (20 μg/well in PBS; incubated overnight at 4°C) with the peptide substrate poly-Glu,Tyr (4:1). Excess protein binding sites are blocked with the addition of 1-5% (w/v) BSA in PBS. Purified GST-fusion proteins are produced in baculovirus-infected insect cells. GST-VEGFR2 and GST-PDGFRβ are then added to the microtiter wells in 2× concentration kinase dilution buffer consisting of 100 mM HEPES, 50 mM NaCl, 40 μM NaVO4, and 0.02% (w/v) BSA. The final enzyme concentration for GST-VEGFR2 or GST-PDGFRβ is 50 ng/mL. Twenty-five μL of diluted sunitinib are subsequently added to each reaction well to produce a range of inhibitor concentrations appropriate for each enzyme. The kinase reaction is initiated by the addition of different concentrations of ATP in a solution of MnCl2 so that the final ATP concentrations spanned the Km for the enzyme, and the final concentration of MnCl2 is 10 mM. The plates are incubated for 5-15 minutes at room temperature before stopping the reaction with the addition of EDTA. The plates are then washed three times with TBST. Rabbit polyclonal antiphosphotyrosine antisera are added to the wells at a 1:10,000 dilution in TBST containing 0.5% (w/v) BSA, 0.025% (w/v) nonfat dry milk, and 100 μM NaVO4 and incubated for 1 hour at 37°C. The plates are then washed three times with TBST, followed by the addition of goat antirabbit antisera conjugated with horseradish peroxidase (1:10,000 dilution in TBST). The plates are incubated for 1 hour at 37°C and then washed three times with TBST. The amount of phosphotyrosine in each well is quantitated after the addition of 2,2'-azino-di-[3-ethylbenzthiazoline sulfonate] as substrate.[1]
|
Cell Assay |
Cells are starved overnight in medium containing 0.1% FBS prior to addition of Sunitinib and FL (50 ng/mL; FLT3-WT cells only). Proliferation is measured after 48 hours of culture using the Alamar Blue assay or trypan blue cell viability assays. Apoptosis is measured 24 hours after Sunitinib addition by Western blotting to detect cleavage of poly (ADP-ribose) polymerase (PARP) or levels of caspase-3.[3]
|
Animal Protocol |
To predict the target SU11248 exposure required to achieve antitumor activity in mouse xenograft models, we directly measured target phosphorylation in tumor xenografts before and after SU11248 treatment and correlated this with plasma inhibitor levels. In target modulation studies in vivo, SU11248 selectively inhibited Flk-1/KDR (VEGF receptor 2) and PDGF receptor beta phosphorylation (in a time- and dose-dependent manner) when plasma concentrations of inhibitor reached or exceeded 50-100 ng/ml. Similar results were obtained in a functional assay of VEGF-induced vascular permeability in vivo. Constant inhibition of VEGFR2 and PDGF receptor beta phosphorylation was not required for efficacy; at highly efficacious doses, inhibition was sustained for 12 h of a 24-h dosing interval. The pharmacokinetic/pharmacodynamic relationship established for SU11248 in these preclinical studies[2].
|
References |
|
Additional Infomation |
To improve the antitumor properties and optimize the pharmaceutical properties including solubility and protein binding of indolin-2-ones, a number of different basic and weakly basic analogues were designed and synthesized. 5-[5-Fluoro-2-oxo-1,2-dihydroindol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide (12b or SU11248) has been found to show the best overall profile in terms of potency for the VEGF-R2 and PDGF-Rbeta tyrosine kinase at biochemical and cellular levels, solubility, protein binding, and bioavailability. 12b is currently in phase I clinical trials for the treatment of cancers.[1]
One challenging aspect in the clinical development of molecularly targeted therapies, which represent a new and promising approach to treating cancers, has been the identification of a biologically active dose rather than a maximum tolerated dose. The goal of the present study was to identify a pharmacokinetic/pharmacodynamic relationship in preclinical models that could be used to help guide selection of a clinical dose. SU11248, a novel small molecule receptor tyrosine kinase inhibitor with direct antitumor as well as antiangiogenic activity via targeting the vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), KIT, and FLT3 receptor tyrosine kinases, was used as the pharmacological agent in these studies. In mouse xenograft models, SU11248 exhibited broad and potent antitumor activity causing regression, growth arrest, or substantially reduced growth of various established xenografts derived from human or rat tumor cell lines. To predict the target SU11248 exposure required to achieve antitumor activity in mouse xenograft models, we directly measured target phosphorylation in tumor xenografts before and after SU11248 treatment and correlated this with plasma inhibitor levels. In target modulation studies in vivo, SU11248 selectively inhibited Flk-1/KDR (VEGF receptor 2) and PDGF receptor beta phosphorylation (in a time- and dose-dependent manner) when plasma concentrations of inhibitor reached or exceeded 50-100 ng/ml. Similar results were obtained in a functional assay of VEGF-induced vascular permeability in vivo. Constant inhibition of VEGFR2 and PDGF receptor beta phosphorylation was not required for efficacy; at highly efficacious doses, inhibition was sustained for 12 h of a 24-h dosing interval. The pharmacokinetic/pharmacodynamic relationship established for SU11248 in these preclinical studies has aided in the design, selection, and evaluation of dosing regimens being tested in human trials.[2] FLT3 (fms-related tyrosine kinase/Flk2/Stk-2) is a receptor tyrosine kinase (RTK) primarily expressed on hematopoietic cells. In blasts from acute myelogenous leukemia (AML) patients, 2 classes of FLT3 activating mutations have been identified: internal tandem duplication (ITD) mutations in the juxtamembrane domain (25%-30% of patients) and point mutations in the kinase domain activation loop (7%-8% of patients). FLT3-ITD mutations are the most common molecular defect identified in AML and have been shown to be an independent prognostic factor for decreased survival. FLT3-ITD is therefore an attractive molecular target for therapy. SU11248 is a recently described selective inhibitor with selectivity for split kinase domain RTKs, including platelet-derived growth factor receptors, vascular endothelial growth factor receptors, and KIT. We show that SU11248 also has potent activity against wild-type FLT3 (FLT3-WT), FLT3-ITD, and FLT3 activation loop (FLT3-Asp835) mutants in phosphorylation assays. SU11248 inhibits FLT3-driven phosphorylation and induces apoptosis in vitro. In addition, SU11248 inhibits FLT3-induced VEGF production. The in vivo efficacy of SU11248 was investigated in 2 FLT3-ITD models: a subcutaneous tumor xenograft model and a bone marrow engraftment model. We show that SU11248 (20 mg/kg/d) dramatically regresses FLT3-ITD tumors in the subcutaneous tumor xenograft model and prolongs survival in the bone marrow engraftment model. Pharmacokinetic and pharmacodynamic analysis in subcutaneous tumors showed that a single administration of an efficacious drug dose potently inhibits FLT3-ITD phosphorylation for up to 16 hours following a single dose. These results suggest that further exploration of SU11248 activity in AML patients is warranted.[3] |
Molecular Formula |
C₂₀H₂₃FN₄O₂
|
---|---|
Molecular Weight |
370.42
|
Exact Mass |
370.181
|
CAS # |
356068-97-8
|
Related CAS # |
N-Desethyl Sunitinib-d5;1217247-62-5;N-Desethyl Sunitinib hydrochloride
|
PubChem CID |
10292573
|
Appearance |
Light yellow to orange solid powder
|
LogP |
3.522
|
Hydrogen Bond Donor Count |
4
|
Hydrogen Bond Acceptor Count |
4
|
Rotatable Bond Count |
6
|
Heavy Atom Count |
27
|
Complexity |
597
|
Defined Atom Stereocenter Count |
0
|
SMILES |
CCNCCNC(=O)C1=C(NC(=C1C)/C=C\2/C3=C(C=CC(=C3)F)NC2=O)C
|
InChi Key |
LIZNIAKSBJKPQC-GDNBJRDFSA-N
|
InChi Code |
InChI=1S/C20H23FN4O2/c1-4-22-7-8-23-20(27)18-11(2)17(24-12(18)3)10-15-14-9-13(21)5-6-16(14)25-19(15)26/h5-6,9-10,22,24H,4,7-8H2,1-3H3,(H,23,27)(H,25,26)/b15-10-
|
Chemical Name |
N-[2-(ethylamino)ethyl]-5-[(Z)-(5-fluoro-2-oxo-1H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-carboxamide
|
Synonyms |
SU-11662; SU11662; N-Desethyl Sunitinib; 356068-97-8; N-DesethylSunitinib; SU-12662; N-[2-(ethylamino)ethyl]-5-[(Z)-(5-fluoro-2-oxo-1H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-carboxamide; CHEMBL3542344; 42LJ35612R; UNII-42LJ35612R; SU 11662
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~6.25 mg/mL (~16.87 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.5 mg/mL (6.75 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly. Solubility in Formulation 2: ≥ 0.62 mg/mL (1.67 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 6.2 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. View More
Solubility in Formulation 3: 0.62 mg/mL (1.67 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.6996 mL | 13.4982 mL | 26.9964 mL | |
5 mM | 0.5399 mL | 2.6996 mL | 5.3993 mL | |
10 mM | 0.2700 mL | 1.3498 mL | 2.6996 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.