ML414 (NGI-1)

Alias: NGI-1; NGI1; NGI 1; ML414; ML 414; ML-414;
Cat No.:V3753 Purity: ≥98%
ML414 (also known NGI-1) is a novel and cell-permeable inhibitor of oligosaccharyltransferase (OST), which is a hetero-oligomeric enzyme that exists in multiple isoforms and transfers oligosaccharides to recipient proteins.
ML414 (NGI-1) Chemical Structure CAS No.: 790702-57-7
Product category: Virus Protease
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

ML414 (also known NGI-1) is a novel and cell-permeable inhibitor of oligosaccharyltransferase (OST), which is a hetero-oligomeric enzyme that exists in multiple isoforms and transfers oligosaccharides to recipient proteins. ML414 was identified from a cell-based high-throughput screen and lead-compound-optimization campaign. In non-small-cell lung cancer cells, NGI-1 blocks cell-surface localization and signaling of the epidermal growth factor receptor (EGFR) glycoprotein, but selectively arrests proliferation in only those cell lines that are dependent on EGFR (or fibroblast growth factor, FGFR) for survival. In these cell lines, OST inhibition causes cell-cycle arrest accompanied by induction of p21, autofluorescence, and cell morphology changes, all hallmarks of senescence. These results identify OST inhibition as a potential therapeutic approach for treating receptor-tyrosine-kinase-dependent tumors and provides a chemical probe for reversibly regulating N-linked glycosylation in mammalian cells.

Biological Activity I Assay Protocols (From Reference)
Targets
OST
ln Vitro
ML414 (also known NGI-1) is a novel and cell-permeable inhibitor of oligosaccharyltransferase (OST), which is a hetero-oligomeric enzyme that exists in multiple isoforms and transfers oligosaccharides to recipient proteins. ML414 was identified from a cell-based high-throughput screen and lead-compound-optimization campaign. In non-small-cell lung cancer cells, NGI-1 blocks cell-surface localization and signaling of the epidermal growth factor receptor (EGFR) glycoprotein, but selectively arrests proliferation in only those cell lines that are dependent on EGFR (or fibroblast growth factor, FGFR) for survival. In these cell lines, OST inhibition causes cell-cycle arrest accompanied by induction of p21, autofluorescence, and cell morphology changes, all hallmarks of senescence. These results identify OST inhibition as a potential therapeutic approach for treating receptor-tyrosine-kinase-dependent tumors and provides a chemical probe for reversibly regulating N-linked glycosylation in mammalian cells.
ln Vivo

Enzyme Assay
The HTS approach using the bioluminescent N-linked glycosylation reporter in D54-ERLucT and D54-LucT cells has been previously described. Briefly, the primary cell-based screen detects N-linked glycan site occupancy using a modified and ER translated luciferase protein with three N-linked glycosylation consensus sequons. Inhibition of glycosylation in D54-ERLucT restores and increases luciferase activity over controls whereas it does not increase activity in the non-ER translated D54-LucT cell line. The methodology for the primary (D54-ERlucT), secondary false positive (D54-LucT), and tertiary (luciferase inhibition) screens as well as toxicity assays with CellTitre Glo are deposited in Pubchem (AID 588693). Genedata Screener software with the Smartfit algorithm was used for to generate AC40 values for comparative analysis of analogs.
Cell Assay
In non-small-cell lung cancer cells, NGI-1 blocks cell-surface localization and signaling of the epidermal growth factor receptor (EGFR) glycoprotein, but selectively arrests proliferation in only those cell lines that are dependent on EGFR (or fibroblast growth factor, FGFR) for survival. In these cell lines, OST inhibition causes cell-cycle arrest accompanied by induction of p21, autofluorescence, and cell morphology changes, all hallmarks of senescence. These results identify OST inhibition as a potential therapeutic approach for treating receptor-tyrosine-kinase-dependent tumors and provides a chemical probe for reversibly regulating N-linked glycosylation in mammalian cells.
Animal Protocol


References

[1]. Comprehensive Interactome Analysis Reveals that STT3B is Required for the N-Glycosylation of Lassa Virus Glycoprotein. J Virol. 2019 Sep 11. pii: JVI.01443-19.

[2]. Oligosaccharyltransferase inhibition induces senescence in RTK-driven tumor cells. Nat Chem Biol. 2016 Dec;12(12):1023-1030.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C17H22N4O3S2
Molecular Weight
394.51
Exact Mass
394.11
Elemental Analysis
C, 51.76; H, 5.62; N, 14.20; O, 12.17; S, 16.25
CAS #
790702-57-7
Related CAS #
790702-57-7
Appearance
Solid powder
SMILES
O=C(NC1=NC=C(C)S1)C2=CC(S(=O)(N(C)C)=O)=CC=C2N3CCCC3
InChi Key
QPKGRLIYJGBKJL-UHFFFAOYSA-N
InChi Code
InChI=1S/C17H22N4O3S2/c1-12-11-18-17(25-12)19-16(22)14-10-13(26(23,24)20(2)3)6-7-15(14)21-8-4-5-9-21/h6-7,10-11H,4-5,8-9H2,1-3H3,(H,18,19,22)
Chemical Name
5-(dimethylsulfamoyl)-N-(5-methyl-1,3-thiazol-2-yl)-2-(pyrrolidin-1-yl)benzamide
Synonyms
NGI-1; NGI1; NGI 1; ML414; ML 414; ML-414;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : 79~100 mg/mL ( 200.24~253.48 mM )
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (6.34 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (6.34 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

View More

Solubility in Formulation 3: 10% DMSO+40% PEG300+5% Tween-80+45% Saline: ≥ 2.5 mg/mL (6.34 mM);


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.5348 mL 12.6739 mL 25.3479 mL
5 mM 0.5070 mL 2.5348 mL 5.0696 mL
10 mM 0.2535 mL 1.2674 mL 2.5348 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • HTS for inhibitors of N-linked glycosylation. [2]. Nat Chem Biol. 2016 Dec;12(12):1023-1030.
  • NGI-1 blocks LLO transfer and hydrolysis. [2]. Nat Chem Biol. 2016 Dec;12(12):1023-1030.
  • NGI-1 blocks OST function. [2]. Nat Chem Biol. 2016 Dec;12(12):1023-1030.
  • NGI-1 disrupts EGFR glycosylation and cell surface expression.. [2]. Nat Chem Biol. 2016 Dec;12(12):1023-1030.
  • NGI-1 blocks RTK driven proliferation. [2]. Nat Chem Biol. 2016 Dec;12(12):1023-1030.
  • NGI-1 induces G1 arrest and senescence in EGFR addicted tumor cells. [2]. Nat Chem Biol. 2016 Dec;12(12):1023-1030.
Contact Us Back to top