ML141(CID-2950007)

Alias: CID-2950007;ML-141; CID2950007; ML 141;CID 2950007; ML141
Cat No.:V1569 Purity: ≥98%
ML141 (also called CID-2950007; ML-141; CID2950007; ML 141)is a novel potent, selective and reversible non-competitive inhibitor of Rho family GTPase cdc42 with potential anticancer activity.
ML141(CID-2950007) Chemical Structure CAS No.: 71203-35-5
Product category: Rho
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

ML141 (also called CID-2950007; ML-141; CID2950007; ML 141) is a novel potent, selective and reversible non-competitive inhibitor of Rho family GTPase cdc42 with potential anticancer activity. With an IC50 of 200 nM, it suppresses CDC42. By causing both cell death and division inhibition, ML141 improves TMX's capacity to inhibit the growth of BLBC cells. A substantial defense against metformin-induced apoptosis is provided by ML141 to neuroblastoma cells. In addition, ML141 reduces K. pneumoniae invasion in a manner that is dependent on dosage.

Biological Activity I Assay Protocols (From Reference)
Targets
cdc42 (IC50 = 200 nM)
ln Vitro
ML141 (CID-2950007) is not cytotoxic in either cell line at doses of 0.1-3 μM after treatment for 4 days. Ten milligrams of the compound did not cause any cytotoxicity in OVCA429 cells, but after four days of treatment, SKOV3ip cells showed some cytotoxicity at this concentration, though not to the point of statistical significance. When applied at 10 μM for 24 or 48 hours, respectively, ML141 does not cause any harm to Swiss 3T3 or Vero E6 cells[1].
ML141 suppresses the migration of ovarian cancer cells and prevents the formation of 3T3 fibroblast filopodia[1].
ln Vivo
ML141 (CID-2950007) (10 μM; intracerebroventricular injection) induces acute anxiety in mice[3].
Enzyme Assay
Overnight at 4°C, wild-type GST-Cdc42 (4 μM) is bound to GSH-beads. By incubating with a buffer containing 10 mM EDTA for 20 minutes at 30°C, washing twice with NP-HPS buffer, and then re-suspending in the same buffer containing 1 mM EDTA/or 1 mM MgCl2, 1 mM DTT, and 0.1% BSA, Cdc42 on GSH-beads is nucleotide-depleted. A 15-minute RT incubation of the protein-bead complex blocks Cdc42 unbound sites. After incubating 30 μL of this suspension with a 20 mM inhibitor for three minutes at room temperature, 30 μL of different concentrations of ice-cold BODIPY-FL-GTP are added. Samples are incubated for 45 minutes at 4° C, and an Accuri flow cytometer is used to measure the binding of fluorescent nucleotide to enzyme. The program GraphPad Prism is used to export and plot raw data.
Cell Assay
The adherent cell CeligoTM cytometer is used to count the number of live and dead cells, which are indicated by positive Calcein-AM and PI staining, respectively, after the cells are incubated with 500 nM Calcein-AM and 1 µM PI for 15 minutes.
Animal Protocol
NOD/SCID mice bearing MDA-MB 231 derived tumors
1 mg/day
i.p.
References

[1]. A Potent and Selective Inhibitor of Cdc42 GTPase.

[2]. EMBO Mol Med . 2013 May;5(5):723-36.

[3]. Oncotarget . 2014 Nov 30;5(22):11709-22.

[4]. Infect Immun . 2015 Feb;83(2):769-79.

[5]. Int J Hematol . 2015 Jan;101(1):5-12.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H21N3O3S
Molecular Weight
407.49
Exact Mass
407.13
Elemental Analysis
C, 64.85; H, 5.19; N, 10.31; O, 11.78; S, 7.87
CAS #
71203-35-5
Related CAS #
71203-35-5
Appearance
Solid powder
SMILES
COC1=CC=C(C=C1)C2CC(=NN2C3=CC=C(C=C3)S(=O)(=O)N)C4=CC=CC=C4
InChi Key
QBNZBMVRFYREHK-UHFFFAOYSA-N
InChi Code
InChI=1S/C22H21N3O3S/c1-28-19-11-7-17(8-12-19)22-15-21(16-5-3-2-4-6-16)24-25(22)18-9-13-20(14-10-18)29(23,26)27/h2-14,22H,15H2,1H3,(H2,23,26,27)
Chemical Name
4-[3-(4-methoxyphenyl)-5-phenyl-3,4-dihydropyrazol-2-yl]benzenesulfonamide
Synonyms
CID-2950007;ML-141; CID2950007; ML 141;CID 2950007; ML141
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~81 mg/mL (~198.8 mM)
Water: <1 mg/mL
Ethanol: <1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (6.14 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

Solubility in Formulation 2: 2.08 mg/mL (5.10 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (5.10 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.


Solubility in Formulation 4: 2% DMSO +30% PEG 300 +5% Tween 80 +ddH2O: 10mg/mL

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.4540 mL 12.2702 mL 24.5405 mL
5 mM 0.4908 mL 2.4540 mL 4.9081 mL
10 mM 0.2454 mL 1.2270 mL 2.4540 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Effects of eukaryotic signaling inhibitors on K. pneumoniae invasion. Invasion assays of K. pneumoniae Ca0438 using Caco-2 cells were performed in the presence of cell signaling inhibitors as indicated. Rho inhibitor I (RhoA, RhoB, and RhoC inhibitor), ML141 (Cdc42/Rac1 inhibitor), LY294002 (PI3K inhibitor), and Akt1/2 inhibitor reduced Ca0438 invasion. Infect Immun . 2015 Feb;83(2):769-79.
Contact Us Back to top