Maytansinol

Alias: Maytansinol; maytansine derivative; Ansamitocin P 0; Antibiotic C 15003P 0; Ansamitocin P-0; NSC 239386; NSC239386; NSC-239386
Cat No.:V6371 Purity: = 98.35%
Maytansinol (formerly also known as NSC-239386; Ansamitocin P-0), is a potent and natural microtubule depolymerizing agent or antimitotic agent with anticancer activity.
Maytansinol Chemical Structure CAS No.: 57103-68-1
Product category: Microtubule(Tubulin)
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
25mg
50mg
100mg
250mg
500mg
1g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: = 98.35%

Product Description

Maytansinol (formerly also known as NSC-239386; Ansamitocin P-0), is a potent and natural microtubule depolymerizing agent or antimitotic agent with anticancer activity. This is a naturally occurring benzoansamacrolide that was extracted from the African shrub Maytenus ovatus's bark. ADCs can use it as a cytotic warhead. In vitro, maytansinol causes microtubule disassembly while inhibiting microtubule assembly. In Drosophila, maytansinol causes disruptions to the mitotic spindle and inhibits the exit of mitosis. The production of site-specific trastuzumab maytansinoid antibody-drug conjugates with enhanced therapeutic activity involves the use of maytansinol.

Biological Activity I Assay Protocols (From Reference)
Targets
Maytansinoids
ln Vitro
Combination therapy, in which two or more agents are applied, is more effective than single therapies for combating cancer. For this reason, combinations of chemotherapy with radiation are being explored in clinical trials, albeit with an empirical approach. We developed a screen to identify, from the onset, molecules that act in vivo in conjunction with radiation, using Drosophila as a model. Screens through two small molecule libraries from the NCI Developmental Therapeutics Program yielded microtubule poisons; this class of agents is known to enhance the effect of radiation in mammalian cancer models. Here we report an analysis of one microtubule depolymerizing agent, maytansinol isobutyrate (NSC292222; maytansinol), in Drosophila and in human cancer cells. We find that the effect of maytansinol is p53 dependent in Drosophila cells and human cancer cells, that maytansinol enhances the effect of radiation in both systems, and that the combinatorial effect of drug and radiation is additive. We also uncover a differential sensitivity to maytansinol between Drosophila cells and Drosophila larvae, which illustrates the value of studying cell behavior in the context of a whole organism. On the basis of these results, we propose that Drosophila might be a useful model for unbiased screens through new molecule libraries to find cancer drugs for combination therapy [1].
ln Vivo
Maytaninol (2 μ M. 10 μ M. Adding it to food for 1-2 hours can cause microtubule depolymerization in fruit flies. Maytaninol (0.5-2 μ M. Adding it to food for 10 days reduced the survival rate of wild-type and p53 mutant larvae. Maytaninol (1 or 2 μ M. Adding to food for 24-26 hours can induce apoptosis in wild-type Drosophila cells [1].
Cell Assay
The growth inhibitory effects of maytansinol with radiation were evaluated using a modified tetrazolium salt (MTT) assay (Carmichael et al., 1988). In the MTT assay, 1000–2000 viable cells were plated in 100 μl of growth medium in 96-well plates (Corning, Ithaca, NY). Following an overnight incubation, maytansinol was added at varying concentrations and the plates were irradiated on the same day (co-treatment) or 24 hours later (pre-treatment) and incubated for 6–7 days. The tetrazolium salt was added at a concentration of 0.4 mg/ml to each well following the 6- to 7-day treatment. The plates were incubated with the salt for 4 hours at 37°C. At 4 hours, the medium was aspirated off, leaving the dark blue formazan product at the bottom of the wells. The reduced MTT product was solubilized by adding 100 μl of 0.2 N HCl in 75% isopropanol, 23% MilliQ water to each well. Thorough mixing was done using a Titertek multichannel pipetman. The absorbency of each well was measured using an automated plate reader (Molecular Devices, Sunnyvale, CA). All experiments were performed in triplicate [1].
Animal Protocol
Fly stocks [1]
Wild-type flies were of the Sevelin stock. p535A-1-4 results from targeted deletion of the gene (Rong et al., 2002).[1]

Irradiation[1]
Feeding-stage third instar larvae were irradiated as previously described (Jaklevic et al., 2006). Briefly, 120-hour-old larvae were rinsed to remove food and passed through sizing sieves to obtain animals of uniform size. Larvae were placed in a Petri dish and irradiated using a TORREX X-ray generator, set at 115 kV and 5 mA (producing 2.4 Rads/second). Irradiated larvae were then cultured on cornmeal-agar media (Jaklevic et al., 2006) containing drug or DMSO carrier. Human cells in 96-well plates were irradiated with a RS2000 Biological Irradiator (Rad Source Technologies) delivering 1 Gy/minute.[1]

AO staining[1]
Larvae were dissected in PBS. Imaginal discs were incubated for 5 minutes in PBS + 0.5 mM AO (Sigma) at room temperature, washed once with PBS, mounted in PBS, and imaged immediately using a Leica DMR fluorescence compound microscope, a Sensicam CCD camera and Slidebook software (Intelligent Imaging). Images were compiled using Photoshop software.[1]

Antibody staining[1]
To detect phosphorylated Histone H3, larval imaginal discs were extirpated in PBS, fixed for 10 minutes in PBT (PBS with 0.2% Tween) containing 10% formaldehyde and washed three times with PBT. Samples were incubated with primary antibodies in blocking solution, which is PBT + 3% normal goat serum, for 2 hours at room temperature or overnight at 4°C. Primary antibodies were rabbit polyclonal anti-phospho-Histone-H3 antibody (Upstate Biotechnology) diluted at 1:1000 and mouse monoclonal anti-β-Tubulin antibody (Developmental Hybridoma Bank) diluted at 1:100. Samples were then washed three times with PBT and incubated for 2–4 hours at room temperature with secondary antibody conjugated to rhodamine or fluorescein, diluted to 1:500 in blocking solution (Jackson ImmunoResearch). Samples were washed three times with PBT, stained with 10 μg/ml Hoechst 33258 in PBT for 2 minutes, and washed three times with PBT before mounting onto slides with Fluoromount G. Samples were imaged on a Leica DMR fluorescence microscope using a Sensicam CCD camera and Slidebook software (Intelligent Imaging). Images at different focal planes were combined using ImageJ (http://rsb.info.nih.gov/ij/), displayed using Photoshop software and the number of mitotic cells was counted manually. [1].
References

[1]. Combinatorial effect of maytansinol and radiation in Drosophila and human cancer cells. Dis Model Mech. 2011 Jul;4(4):496-503.

[2]. New insights into the anticancer therapeutic potential of maytansine and its derivatives. Biomed Pharmacother. 2023 Sep;165:115039.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C28H37CLN2O8
Molecular Weight
565.06
Exact Mass
564.2238
Elemental Analysis
C, 59.52; H, 6.60; Cl, 6.27; N, 4.96; O, 22.65
CAS #
57103-68-1
Related CAS #
57103-68-1;
Appearance
White to yellow solid powder
Source
Microbes such as Bacillus megaterium IFO 12108, Streptomyces coelicolor IFO 3807, Streptomyces castaneus IFO 13670 and Streptomyces minutiscleroticus IFO 13361
LogP
3.73
tPSA
130.090
SMILES
C[C@@H]1[C@@H]2C[C@]([C@@H](/C=C/C=C(/CC3=CC(=C(C(=C3)OC)Cl)N(C(=O)C[C@@H]([C@]4([C@H]1O4)C)O)C)\C)OC)(NC(=O)O2)O
InChi Key
QWPXBEHQFHACTK-RZKXNLMUSA-N
InChi Code
InChI=1S/C28H37ClN2O8/c1-15-8-7-9-22(37-6)28(35)14-20(38-26(34)30-28)16(2)25-27(3,39-25)21(32)13-23(33)31(4)18-11-17(10-15)12-19(36-5)24(18)29/h7-9,11-12,16,20-22,25,32,35H,10,13-14H2,1-6H3,(H,30,34)/b9-7+,15-8+/t16-,20+,21+,22-,25+,27+,28+/m1/s1
Chemical Name
(1S,2R,3S,5S,6S,16E,18E,20R,21S)-11-chloro-6,21-dihydroxy-12,20-dimethoxy-2,5,9,16-tetramethyl-4,24-dioxa-9,22-diazatetracyclo[19.3.1.110,14.03,5]hexacosa-10,12,14(26),16,18-pentaene-8,23-dione
Synonyms
Maytansinol; maytansine derivative; Ansamitocin P 0; Antibiotic C 15003P 0; Ansamitocin P-0; NSC 239386; NSC239386; NSC-239386
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ≥ 35 mg/mL (~61.9 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (3.68 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (3.68 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (3.68 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.7697 mL 8.8486 mL 17.6972 mL
5 mM 0.3539 mL 1.7697 mL 3.5394 mL
10 mM 0.1770 mL 0.8849 mL 1.7697 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Maytansinol disrupts the mitotic spindle and prevents mitotic exit in Drosophila. Dis Model Mech . 2011 Jul;4(4):496-503.
  • Sensitivity of Drosophila larvae to maytansinol and IR. Dis Model Mech . 2011 Jul;4(4):496-503.
  • Maytansinol inhibits the growth of HCT116 human colon cancer cells. Dis Model Mech . 2011 Jul;4(4):496-503.
  • Maytansinol induces cell death in wild-type but not p53 mutant Drosophila larvae. Dis Model Mech . 2011 Jul;4(4):496-503.
Contact Us Back to top