Mavatrep

Alias: JNJ39439335; JNJ 39439335; JNJ-39439335
Cat No.:V4517 Purity: ≥98%
Mavatrep (formerly known as JNJ-39439335) is a novel, orally bioavailable, potent and selective TRPV1 antagonist (Ki = 6.5 nM) with a potential to manageinflammatory pain.
Mavatrep Chemical Structure CAS No.: 956274-94-5
Product category: TRP Channel
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Mavatrep (formerly known as JNJ-39439335) is a novel, orally bioavailable, potent and selective TRPV1 antagonist (Ki = 6.5 nM) with a potential to manage inflammatory pain. It exhibits minimal effect on the enzymatic activity (IC50 > 25 μM) of CYP isoforms 3A4, 1A2, and 2D6. In a TRPV1 functional assay, using cells expressing recombinant human TRPV1 channels, Mavatrep antagonized capsaicin-induced Ca(2+) influx, with an IC50 value of 4.6 nM. In the complete Freund's adjuvant- and carrageenan-induced thermal hypersensitivity models, Mavatrep exhibited full efficacy, with ED80 values of 7.8 and 0.5 mg/kg, respectively, corresponding to plasma levels of 270.8 and 9.2 ng/mL, respectively. On the basis of its superior pharmacologic and safety profile, Mavatrep was selected for clinical development for the treatment of pain.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
In HEK293 cells expressing TRPV1 channels, mavatrep (a series of decreasing doses commencing at 1 μM; 25 minutes) suppresses the Ca2+ influx caused by capsaicin [1].
ln Vivo
Mavatrep (0.1, 0.3, 1, 3, 10 mg/kg; oral; single dosage) exhibits complete reversal of pain in the carrageenan inflammation model and thermal hypersensitivity in the CFA pain inflammation model [1]. In rats, Mavatrep (10 mg/kg; oral; single dosage) shows a notable bioavailability of 51% [1].
Cell Assay
Cell viability assay [1]
Cell Types: HEK293 cells (stably expressing TRPV1 channel)
Tested Concentrations: A series of decreasing concentrations starting from 1 μM
Incubation Duration: 25 minutes
Experimental Results: Inhibited capsaicin-induced Ca2+ influx, IC50 value was 4.6 nM.
Animal Protocol
Animal/Disease Models: Male SD (SD (Sprague-Dawley)) rat (195-350 g; CFA pain inflammation model) [1].
Doses: 10 mg/kg
Route of Administration: po (po (oral gavage)) single dose.
Experimental Results: Significant reversal of CFA-induced thermal hypersensitivity, which started 30 minutes after administration and lasted for at least 3 hrs (hrs (hours)).

Animal/Disease Models: Male SD (SD (Sprague-Dawley)) rat (195-350 g; CFA pain inflammation model) [1].
Doses: 1, 3, 10, 30 mg/kg
Route of Administration: po (po (oral gavage)) single dose.
Experimental Results: The thermal hypersensitivity reaction was completely reversed, with ED50 and ED80 values of 1.8 and 7.8 mg/kg, respectively, and corresponding plasma levels of 41.9 and 270.8 ng/mL, respectively.

Animal/Disease Models: Male SD (SD (Sprague-Dawley)) rat (195-350 g; carrageenan inflammatory pain model) [1].
Doses: 0.1, 0.3, 1, 3, 10 mg/kg
Route of Administration: po (po (oral gavage)) single dose.
Experimental Results: The thermal hypersensitivity reaction induced by carrageenan was completely reversed, with ED50 and ED80 values of 0.18 and 0.48 mg/kg, respectively, and the corresponding plasma levels were 3.8
References
[1]. Parsons W H, et al. Benzo [d] imidazole Transient Receptor Potential Vanilloid 1 Antagonists for the Treatment of Pain: Discovery of trans-2-(2-{2-[2-(4-Trifluoromethyl-phenyl)-vinyl]-1 H-benzimidazol-5-yl}-phenyl)-propan-2-ol (Mavatrep). Journal of medic
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C25H21N2OF3
Molecular Weight
422.442
CAS #
956274-94-5
SMILES
OC(C)(C)C1=CC=CC=C1C2=CC=C3N=C(/C=C/C4=CC=C(C(F)(F)F)C=C4)NC3=C2
InChi Key
ORDHXXHTBUZRCN-NTEUORMPSA-N
InChi Code
InChI=1S/C25H21F3N2O/c1-24(2,31)20-6-4-3-5-19(20)17-10-13-21-22(15-17)30-23(29-21)14-9-16-7-11-18(12-8-16)25(26,27)28/h3-15,31H,1-2H3,(H,29,30)/b14-9+
Chemical Name
(E)-2-(2-(2-(4-(trifluoromethyl)styryl)-1H-benzo[d]imidazol-6-yl)phenyl)propan-2-ol
Synonyms
JNJ39439335; JNJ 39439335; JNJ-39439335
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~16.67 mg/mL (~39.46 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (5.92 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: 2.5 mg/mL (5.92 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.3672 mL 11.8360 mL 23.6720 mL
5 mM 0.4734 mL 2.3672 mL 4.7344 mL
10 mM 0.2367 mL 1.1836 mL 2.3672 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top