yingweiwo

Magnesium acetate tetrahydrate

Cat No.:V50605 Purity: ≥98%
Acetic acid magnesium tetrahydrate is the hydrated form of anhydrous magnesium acetate salt.
Magnesium acetate tetrahydrate
Magnesium acetate tetrahydrate Chemical Structure CAS No.: 16674-78-5
Product category: New3
This product is for research use only, not for human use. We do not sell to patients.
Size Price
Other Sizes

Other Forms of Magnesium acetate tetrahydrate:

  • Acetic acid potassium 99% (potassium acetate)
  • Acetic acid lead (lead tetraacetate)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Acetic acid magnesium tetrahydrate is the hydrated form of anhydrous magnesium acetate salt. As the salt form of magnesium, magnesium acetate is one of the bioavailable forms of magnesium and forms a very water-soluble (H2O-soluble) compound. Acetic acid magnesium tetrahydrate can be used as an electrolyte supplement or as a reagent in molecular biology experiments.
Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Intestinal absorption is achieved mainly through passive diffusion.
Mainly renal exctretion, where up to 97% of magnesium may be excreted renally during hypermagnesemia.
Magnesium ions display approximate volume of distribution of 0.2 to 0.4 L/kg
Biological Half-Life
Elimination half-life has been reported to be 27.7 hours following an overdose of 400mEq magnesium in an adult.
Toxicity/Toxicokinetics
Protein Binding
Protein binding of magnesium ions is about 30%
References

[1]. Thermal dehydration of magnesium acetate tetrahydrate: formation and in situ crystallization of anhydrous glass. J Phys Chem B. 2012 Dec 13;116(49):14477-86.

Additional Infomation
Magnesium acetate tetrahydrate is a hydrated form of anhydrous magnesium acetate salt with the chemical formula of Mg(CH3COO)2 • 4H2O. As a salt form of magnesium, magnesium acetate is one of the bioavailable forms of magnesium and forms a very water soluble compound. Magnesium is an essential element and second most abundant cation in the body that plays a key role in maintaining normal cellular function such as production of ATP and efficient enzyme activity. Magnesium acetate tetrahydrate can be used as an electrolyte supplementation or a reagent in molecular biology experiments.
Magnesium Acetate Tetrahydrate is the hydrated acetate salt form of magnesium. Magnesium is a divalent cation essential for a number of biochemical processes involved in nerve signaling, bone mineralization and muscle contractions. About 350 enzymes involved in glycolysis and the Krebs cycle, formation of cyclic-AMP and ATP, cellular signal transduction and protein and nucleic acid synthesis are dependent on magnesium.
See also: Magnesium Cation (has active moiety) ... View More ...
Drug Indication
Used as magnesium salf-containing laxatives to prevent constipation. It can bring synergistic effect to restore normal bowel function when using in combination with aluminum salts that induce bowel retention. Magnesium acetate tetrahydrate is used as a source of water and electrolytes when combined with dextrose and other salts to form intravenous infusions. This injection can be used for patients with carbohydrate or magnesium deficiency, insulin hypoglycemia, constipation or hypertension during pregnancy.
Mechanism of Action
Magnesium ions electrostatically stabilize the adenylyl cyclase complex and enhance its catalytic actions and production of cAMP. They also regulate the level of phosphorylation in various pathways by formation of transition state of phosphoryl transfer reaction by protein kinases and stabilize ATP binding to protein kinases via electrostatic interactions. Many metabolic enzymes involved in glycolysis and Krebs cycle are magnesium-dependent. Magnesium-containing laxatives cause diarrhea through water retention and increased fecal mass that stimulates peristalsis. When used as an electrolyte supplementation, magnesium acetate tetrahydrate induces diuresis and metabolic alkalinizing effect. Magnesium ions enhance reactivity of arteries to vasoconstrictors, promotes vasoconstriction, and increases peripheral resistance, leading to increased blood pressure through potential competition with calcium ions in the vascular system. Magnesium ions also regulate other ions entering and exiting the cell membrane by acting as a ligand in N-methyl-D-aspartate receptor.
Pharmacodynamics
Magnesium is an essential cofactor for many enzymatic reactions such as protein synthesis and ATP production. It also participates in adenylyl cyclase pathway and tyrosine kinase signalling pathways. Magnesium may also play a role in regulating glucose metabolism. It serves as an essential cation for a number of biochemical processes involved in nerve signaling, bone mineralization and muscle contractions.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C4H14MGO8
Molecular Weight
214.4542
Exact Mass
214.054
CAS #
16674-78-5
Related CAS #
Acetic acid potassium 99%;127-08-2;Acetic acid;64-19-7;Acetic acid lead;546-67-8
PubChem CID
134717
Appearance
Typically exists as solid at room temperature
Density
1.454
Boiling Point
117.1ºC at 760 mmHg
Melting Point
72-75 °C(lit.)
Vapour Pressure
13.9mmHg at 25°C
Index of Refraction
n20/D 1.358
Hydrogen Bond Donor Count
4
Hydrogen Bond Acceptor Count
8
Rotatable Bond Count
0
Heavy Atom Count
13
Complexity
25.5
Defined Atom Stereocenter Count
0
SMILES
[Mg+2].[O-]C(C([H])([H])[H])=O.[O-]C(C([H])([H])[H])=O.O([H])[H].O([H])[H].O([H])[H].O([H])[H]
InChi Key
XKPKPGCRSHFTKM-UHFFFAOYSA-L
InChi Code
InChI=1S/2C2H4O2.Mg.4H2O/c2*1-2(3)4;;;;;/h2*1H3,(H,3,4);;4*1H2/q;;+2;;;;/p-2
Chemical Name
magnesium;diacetate;tetrahydrate
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~466.31 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (11.66 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (11.66 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (11.66 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.6631 mL 23.3155 mL 46.6309 mL
5 mM 0.9326 mL 4.6631 mL 9.3262 mL
10 mM 0.4663 mL 2.3315 mL 4.6631 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us