Losartan Potassium (DuP 753)

Alias: DuP 753; MK 954; DuP-753;MK-954; DuP753; MK954; Cozaar; Lorzaar; Losaprex; UNII-3ST302B24A; MK954;
Cat No.:V1773 Purity: ≥98%
Losartan Potassium (formerly DuP-753; MK-954; DuP753;MK954;Cozaar; Lorzaar; Losaprex), thepotassium salt of losartan, is an oral, selective, and non-peptide angiotensin II receptor antagonist approved as an antihypertensive drug.
Losartan Potassium (DuP 753) Chemical Structure CAS No.: 124750-99-8
Product category: RAAS
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
500mg
1g
2g
5g
10g
Other Sizes

Other Forms of Losartan Potassium (DuP 753):

  • Losartan Carboxylic Acid
  • Losartan D4 Carboxylic Acid
  • Losartan (DUP 89)
  • Losartan D4
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Losartan Potassium (formerly DuP-753; MK-954; DuP753; MK954; Cozaar; Lorzaar; Losaprex), the potassium salt of losartan, is an oral, selective, and non-peptide angiotensin II receptor antagonist approved as an antihypertensive drug. It is an AT II antagonist that competes with angiotensin II for binding to AT1 receptors with IC50 of 20 nM.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Angiotensin II and losartan potassium compete with one another to bind to AT1 receptors. Twenty nM is the quantity that inhibits angiotensin II binding by 50% (IC50) [1]. ISC is impacted by losartan potassium (40 μM), while ANGII's impact on ISC is inhibited [2]. In endometrial cancer cells, lossartan potassium dramatically inhibits Ang II-mediated cell growth. When Losartan potassium and anti-miR-155 were taken together, the antiproliferative impact was noticeably greater than when either medication was taken alone [3].
ln Vivo
Compared to Fbn1C1039G/+ mice treated with a placebo, distal airspace aperture was smaller in mice treated with losartan potassium (0.6 g/L, po). Propranolol and losartan potassium dosage titrations for similar hemodynamic effects. Losartan potassium antagonized TGF-β signaling in the aorta wall of Fbn1C1039G/+ mice, according to pSmad2 nuclear staining studies. The improvement of pulmonary disease symptoms by losartan potassium does not seem to be connected to better hemodynamics [4]. An intra-arterial injection of losartan potassium (10 mg/kg) raises blood angiotensin levels four to six times. Plasma renin levels are increased 100-fold by losartan potassium (10 mg/kg, ip); plasma angiotensinogen levels fall to 24% of control; and plasma aldosterone levels remain unchanged [5].
Animal Protocol
Dissolved in 50% dimethylsulfoxide/50% distilled water; 180 mg/d; Taken via diet
Male cynomolgus monkeys fed a diet containing 0.067 mg cholesterol/kJ
References
[1]. Burnier, M. Angiotensin II type 1 receptor blockers. Circulation, 2001. 103(6): p. 904-12.
[2]. Ashry, O., et al. Evidence for expression and function of angiotensin II receptor type 1 in pulmonary epithelial cells. Respir Physiol Neurobiol, 2014.
[3]. Choi, C.H., et al. Angiotensin II type I receptor and miR-155 in endometrial cancers: synergistic antiproliferative effects of anti-miR-155 and losartan on endometrial cancer cells. Gynecol Oncol, 2012. 126(1): p. 124-31.
[4]. Habashi, J.P., et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science, 2006. 312(5770): p. 117-21.
[5]. Campbell, D.J., et al. Effects of losartan on angiotensin and bradykinin peptides and angiotensin-converting enzyme. J Cardiovasc Pharmacol, 1995. 26(2): p. 233-40
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H23CLKN6O
Molecular Weight
462.01
CAS #
124750-99-8
SMILES
OCC1=C(Cl)N=C(CCCC)N1CC2=CC=C(C3=CC=CC=C3C4=N[N-]N=N4)C=C2.[K+]
Synonyms
DuP 753; MK 954; DuP-753;MK-954; DuP753; MK954; Cozaar; Lorzaar; Losaprex; UNII-3ST302B24A; MK954;
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 92 mg/mL (199.1 mM)
Water:92 mg/mL (199.1 mM)
Ethanol:92 mg/mL (199.1 mM)
Solubility (In Vivo)
Saline:30 mg/mL
 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1645 mL 10.8223 mL 21.6446 mL
5 mM 0.4329 mL 2.1645 mL 4.3289 mL
10 mM 0.2164 mL 1.0822 mL 2.1645 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us