Lonidamine (AF-1890)

Alias: AF 1890; AF1890; AF-1890;Diclondazolic Acid; DICA; Diclondazolic acid; Doridamina; Lonidamine
Cat No.:V2100 Purity: ≥98%
Lonidamine (AF 1890, Diclondazolic Acid)is an orally bioactive small molecule inhibitor of hexokinase, also inhibits mitochondrial pyruvate carrier(Ki2.5 μM in isolated rat liver mitochondria) andplasma membrane monocarboxylate transporters.
Lonidamine (AF-1890) Chemical Structure CAS No.: 50264-69-2
Product category: Hexokinase
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Lonidamine (AF 1890, Diclondazolic Acid) is an orally bioactive small molecule inhibitor of hexokinase, also inhibits mitochondrial pyruvate carrier (Ki 2.5 μM in isolated rat liver mitochondria) and plasma membrane monocarboxylate transporters. Lonidamine reduces the oxygen consumption in both normal and neoplastic cells, while it increases the aerobic glycolysis of normal cells but inhibited that of tumor cells. Lonidamine induces the permeabilization of ANT proteoliposomes in a cell-free system, yet has no effect on protein-free liposomes. Lonidamine adds to synthetic planar lipid bilayers containing ANT, eliciting ANT channel activities with clearly distinct conductance levels. Lonidamine provokes a disruption of the mitochondrial transmembrane potential which precedes signs of nuclear apoptosis and cytolysis.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
In AKR-2B and TIG-1 cells, lonsidine (100 μM, 24 h) suppresses the rate of oxygen consumption and lactate generation induced by TGF-β[3]. Lonidamine (100 μM, 24/48 h) suppresses the growth of A549 and H2030BrM3 cells[4]. A549 and H2030BrM3 cell invasion is inhibited by lonsidamine (100–200 μM, 24 h)[4]. Inhibiting the activities of mitochondrial complex I and II, lonsidamine (100-1000 μM, 24 h) is used[4]. In H2030BrM3 lung cancer cells, lonsidamine (200 μM, 24 h) enhances ROS generation[4].
ln Vivo
In a mouse model of BLM-induced pulmonary fibrosis, lonsamine (oral treatment, 10-100 mg/kg/day, d10 to d20) enhances lung function by blocking hexokinase 2 (HK2) activity[3].
Animal Protocol
Animal/Disease Models: Lonidamine (oral administration, 10 -100 mg/kg/day, d10 to d20) improves lung function by inhibiting hexokinase 2 (HK2) activity in BLM-induced pulmonary fibrosis murine model[3].
Doses: 10, 30, 100 mg/kg/day
Route of Administration: Oral administration, daily, d10 to d20 after BLM treatment.
Experimental Results: Partially or completely reversed the increases in HK2 and lactate induced by BLM and decreased the expression of 10 profibrotic mediators.
References
[1]. Nancolas B, et al. The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters. Biochem J. 2016 Apr 1;473(7):929-36.
[2]. Ilya A Shutkov, et al. Ru(III) Complexes with Lonidamine-Modified Ligands. Int J Mol Sci. 2021 Dec 15;22(24):13468.
[3]. Xueqian Yin, et al. Hexokinase 2 couples glycolysis with the profibrotic actions of TGF-β. Sci Signal. 2019 Dec 17;12(612):eaax4067.
[4]. Gang Cheng, et al. Targeting lonidamine to mitochondria mitigates lung tumorigenesis and brain metastasis. Nat Commun. 2019 May 17;10(1):2205.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C15H10CL2N2O2
Molecular Weight
321.16
CAS #
50264-69-2
Related CAS #
50264-69-2
SMILES
ClC1C([H])=C(C([H])=C([H])C=1C([H])([H])N1C2=C([H])C([H])=C([H])C([H])=C2C(C(=O)O[H])=N1)Cl
InChi Key
WDRYRZXSPDWGEB-UHFFFAOYSA-N
InChi Code
InChI=1S/C15H10Cl2N2O2/c16-10-6-5-9(12(17)7-10)8-19-13-4-2-1-3-11(13)14(18-19)15(20)21/h1-7H,8H2,(H,20,21)
Chemical Name
1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxylic acid
Synonyms
AF 1890; AF1890; AF-1890;Diclondazolic Acid; DICA; Diclondazolic acid; Doridamina; Lonidamine
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO:64 mg/mL (199.3 mM)
Water:<1 mg/mL
Ethanol:<1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (6.48 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (6.48 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.1137 mL 15.5686 mL 31.1371 mL
5 mM 0.6227 mL 3.1137 mL 6.2274 mL
10 mM 0.3114 mL 1.5569 mL 3.1137 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top