Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
2mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
1g |
|
||
Other Sizes |
|
Purity: =99.63%
Liraglutide, a Glucagon-like Peptide 1 (GLP-1) analog, is a potent agonist of the Glucagon-like Peptide 1 receptor. It is prescribed to patients with type 2 diabetes mellitus who do not respond to metformin as an anti-hyperglycemic agent and additional therapy.
Targets |
GLP-1 receptor/glucagon-like peptide-1 receptor
|
---|---|
ln Vitro |
Liraglutide may provide protection against endothelial cell dysfunction (ECD), an early abnormality in diabetic vascular disease, by attenuating the induction of plasminogen activator inhibitor type-1 (PAI-1) and vascular adhesion molecule (VAM) expression in human vascular endothelial cells (hVECs) in vitro. Research conducted in vitro indicates that stimulated expression of VAM and PAI-1 is inhibited by liraglutide in a GLP-1R-dependent manner[3].
|
ln Vivo |
In the ApoE-/-mouse model, vascular reactivity and immunohistochemical analysis are investigated in vivo. In mice given liraglutide, they show a marked improvement in endothelial function, an effect that is dependent on GLP-1R. Additionally, ligandomycin treatment decreases the expression of intercellular adhesion molecule-1 (ICAM-1) in the aortic endothelium and increases endothelial nitric oxide synthase (eNOS), both of which are reliant on the GLP-1R[3]. Liraglutide increases pancreatic b cell mass through enhanced proliferation, which lowers hyperglycemia in T2D mouse models[2].
Incretin mimetics are frequently used in the treatment of type 2 diabetes because they potentiate β cell response to glucose. Clinical evidence showing short-term benefits of such therapeutics (e.g., liraglutide) is abundant; however, there have been several recent reports of unexpected complications in association with incretin mimetic therapy. Importantly, clinical evidence on the potential effects of such agents on the β cell and islet function during long-term, multiyear use remains lacking. We now show that prolonged daily liraglutide treatment of >200 days in humanized mice, transplanted with human pancreatic islets in the anterior chamber of the eye, is associated with compromised release of human insulin and deranged overall glucose homeostasis. These findings raise concern about the chronic potentiation of β cell function through incretin mimetic therapy in diabetes.[2] The glucagon like peptide-1 receptor (GLP-1R) agonist liraglutide attenuates induction of plasminogen activator inhibitor type-1 (PAI-1) and vascular adhesion molecule (VAM) expression in human vascular endothelial cells (hVECs) in vitro and may afford protection against endothelial cell dysfunction (ECD), an early abnormality in diabetic vascular disease. Our study aimed to establish the dependence of the in vitro effects of liraglutide on the GLP-1R and characterise its in vivo effects in a mouse model of ECD. In vitro studies utilised the human vascular endothelial cell line C11-STH and enzyme-linked immunosorbent assays (ELISA) for determination of PAI-1 and VAM expression. In vivo studies of vascular reactivity and immunohistochemical analysis were performed in the ApoE(-/-) mouse model. In vitro studies demonstrated GLP-1R-dependent liraglutide-mediated inhibition of stimulated PAI-1 and VAM expression. In vivo studies demonstrated significant improvement in endothelial function in liraglutide treated mice, a GLP-1R dependent effect. Liraglutide treatment also increased endothelial nitric oxide synthase (eNOS) and reduced intercellular adhesion molecule-1 (ICAM-1) expression in aortic endothelium, an effect again dependent on the GLP-1R. Together these studies identify in vivo protection, by the GLP-1R agonist liraglutide, against ECD and provide a potential molecular mechanism responsible for these effects.[3] |
Cell Assay |
In Nunclon cell culture dishes coated with gelatin and supplemented with Media-199 containing penicillin/streptomycin, 20% FCS, 20 µg/ml endothelial cell growth factor, and 20 µg/ml heparin, C11-STH cells are grown until confluence at 37°C. Under serum-free conditions, C11-STH cells are cultured with 100 nM liraglutide or 100 nM GLP-1 receptor antagonist exendin (9-39) alone, or with 10 ng/ml TNFα for 16 hours either in combination with liraglutide and/or exendin (9-39). Protein expression levels are measured using ELISA assays for VCAM-1 and ICAM-1 using conditioned medium from C11-STH cells.
|
Animal Protocol |
Athymic nude mice
300 μg/kg/day s.c. Islets destined for transplantation into liraglutide-treated diabetic recipients were cultured for 48h in Miami Media supplemented with liraglutide (0.1 nM) (Bohman et al., 2007). Recipient treatment with either liraglutide (300 μg/kg/day s.c.) (Merani et al., 2008) or saline was also started two days prior to transplantation. The rationale for pretreatment was to establish baseline drug levels in the recipient mice before transplantation. Islet transplantation into the anterior chamber of the eye of diabetic nude mice was performed as previously described (Abdulreda et al., 2013; Speier et al., 2008a; Speier et al., 2008b). A total of 1000 human islet equivalents (IEQs) (500 IEQs in each eye) were transplanted into confirmed hyperglycemic nude mouse recipients.[2] |
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
Bioavailability of liraglutide after subcutaneous injection is approximately 55% and maximum concentrations are reached after 11.7 hours. 6% excreted in urine and 5% excreted in feces. 13L. 1.2L/h. The mean apparent volume of distribution after subcutaneous administration of Victoza 0.6 mg is approximately 13 L. The mean volume of distribution after intravenous administration of Victoza is 0.07 L/kg. Liraglutide is extensively bound to plasma protein (>98%). Following a 3(H)-liraglutide dose, intact liraglutide was not detected in urine or feces. Only a minor part of the administered radioactivity was excreted as liraglutide-related metabolites in urine or feces (6% and 5%, respectively). The majority of urine and feces radioactivity was excreted during the first 6-8 days. The mean apparent clearance following subcutaneous administration of a single dose of liraglutide is approximately 1.2 L/hr with an elimination half-life of approximately 13 hours, making Victoza suitable for once daily administration. Following subcutaneous administration, maximum concentrations of liraglutide are achieved at 8-12 hours post dosing. The mean peak (Cmax) and total (AUC) exposures of liraglutide were 35 ng/mL and 960 ng hr/mL, respectively, for a subcutaneous single dose of 0.6 mg. After subcutaneous single dose administrations, Cmax and AUC of liraglutide increased proportionally over the therapeutic dose range of 0.6 mg to 1.8 mg. At 1.8 mg Victoza, the average steady state concentration of liraglutide over 24 hours was approximately 128 ng/mL. AUC0-8 was equivalent between upper arm and abdomen, and between upper arm and thigh. AUC0-8 from thigh was 22% lower than that from abdomen. However, liraglutide exposures were considered comparable among these three subcutaneous injection sites. Absolute bioavailability of liraglutide following subcutaneous administration is approximately 55%. Liraglutide is a novel once-daily human glucagon-like peptide (GLP)-1 analog in clinical use for the treatment of type 2 diabetes. To study metabolism and excretion of 3(H)-liraglutide, a single subcutaneous dose of 0.75 mg/14.2 MBq was given to healthy males. The recovered radioactivity in blood, urine, and feces was measured, and metabolites were profiled. In addition, 3(H)-liraglutide and [(3)H]GLP-1(7-37) were incubated in vitro with dipeptidyl peptidase-IV (DPP-IV) and neutral endopeptidase (NEP) to compare the metabolite profiles and characterize the degradation products of liraglutide. The exposure of radioactivity in plasma (area under the concentration-time curve from 2 to 24 hr) was represented by liraglutide (> or = 89%) and two minor metabolites (totaling < or =11%). Similarly to GLP-1, liraglutide was cleaved in vitro by DPP-IV in the Ala8-Glu9 position of the N terminus and degraded by NEP into several metabolites. The chromatographic retention time of DPP-IV-truncated liraglutide correlated well with the primary human plasma metabolite [GLP-1(9-37)], and some of the NEP degradation products eluted very close to both plasma metabolites. Three minor metabolites totaling 6 and 5% of the administered radioactivity were excreted in urine and feces, respectively, but no liraglutide was detected. In conclusion, liraglutide is metabolized in vitro by DPP-IV and NEP in a manner similar to that of native GLP-1, although at a much slower rate. The metabolite profiles suggest that both DPP-IV and NEP are also involved in the in vivo degradation of liraglutide. The lack of intact liraglutide excreted in urine and feces and the low levels of metabolites in plasma indicate that liraglutide is completely degraded within the body. For more Absorption, Distribution and Excretion (Complete) data for Liraglutide (8 total), please visit the HSDB record page. Metabolism / Metabolites Liraglutide is less sensitive to metabolism than the endogenous GLP-1 and so is more slowly metabolized by dipeptidyl peptidase-4 and neutral endopeptidase to various smaller polypeptides which have not all been structurally determined. A portion of Liraglutide may be completely metabolized to carbon dioxide and water. The metabolic and excretion patterns were highly similar across species with liraglutide being fully metabolised in the body by sequential cleavage of small peptide fragments and amino acids. The in vitro metabolism studies indicate that the initial metabolism involves cleavage of the peptide backbone with no degradation of the glutamate-palmitic acid side-chain. Mice, rats and monkeys displayed similar plasma profiles and showed no significant gender differences. A higher number of metabolites were observed in plasma from the animal species (especially the rat and monkey) as compared to human plasma. This disparity can partly be explained by differences in the sample preparation as human plasma samples were freeze dried prior to analysis causing a removal of volatile metabolites (including tritiated water). All detected metabolites were minor and obtained in low amount (<15%) and therefore no structural identification of these was performed. This is acceptable since the metabolites are only formed in low amounts and since the metabolites are expected to resemble endogenous substances with well-known metabolic pathways During the initial 24 hours following administration of a single 3(H)-liraglutide dose to healthy subjects, the major component in plasma was intact liraglutide. Liraglutide is endogenously metabolized /SRP: in a manner similar to large proteins/ without a specific organ as a major route of elimination. Biological Half-Life Terminal half life of 13 hours. The terminal half-life of liraglutide seems to be similar in pigs (approximately 14 hr) and humans (approximately 15 hr) while shorter in mice, rats, rabbits and monkeys (4-8 hr). Several studies in monkeys, pigs and humans indicated that extravascular administration (SC and pulmonary) of liraglutide prolongs the terminal half-life as compared to intravenous (IV) administration. Furthermore, the terminal half-life seemed also to be prolonged by repeated dosing in rats, monkeys, pigs and humans. This tendency was not apparent for mice and rabbits. elimination half-life ... approximately 13 hours |
Toxicity/Toxicokinetics |
Toxicity Summary
IDENTIFICATION AND USE: Liraglutide is a clear colorless liquid formulated into solution for subcutaneous use. Liraglutide is a synthetic, long-acting human glucagon-like peptide-1 (GLP-1) receptor agonist (incretin mimetic). It is used as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus. HUMAN EXPOSURE AND TOXICITY: Overdoses have been reported in clinical trials and post-marketing use of liraglutide. Effects have included severe nausea and severe vomiting. Post-marketing reports also include acute pancreatitis, including fatal and non-fatal hemorrhagic or necrotizing pancreatitis, serious hypersensitivity reactions (e.g., anaphylactic reactions and angioedema), and acute renal failure and worsening of chronic renal failure (which may require hemodialysis). Liraglutide also causes dose-dependent and treatment-duration-dependent thyroid C-cell tumors at clinically relevant exposures in both genders of rats and mice. It is unknown whether liraglutide causes thyroid C-cell tumors, including medullary thyroid carcinoma (MTC), in humans, as human relevance could not be ruled out by clinical or nonclinical studies. Therefore, liraglutide is contraindicated in patients with a personal or family history of medullary thyroid carcinoma (MTC) and in patients with multiple endocrine neoplasia syndrome type 2 (MEN 2). Finally, there are no adequate and well-controlled studies of liraglutide in pregnant women; however the drug did cause developmental toxicity in experimental animals. Therefore, liraglutide should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. ANIMAL STUDIES: Liraglutide had no adverse effects on fertility when given to male rats at doses up to 1.0 mg/kg/day. However, liraglutide caused developmental toxicity in both rats and rabbits. When female rats were given subcutaneous doses of 0.1, 0.25 and 1.0 mg/kg/day, the number of early embryonic deaths in the 1 mg/kg/day group increased slightly. Fetal abnormalities and variations in kidneys and blood vessels, irregular ossification of the skull, and a more complete state of ossification occurred at all doses. Mottled liver and minimally kinked ribs occurred at the highest dose. The incidences of fetal malformations in liraglutide-treated groups were misshapen oropharynx and/or narrowed opening into larynx at 0.1 mg/kg/day and umbilical hernia at 0.1 and 0.25 mg/kg/day. In a rabbit developmental study, pregnant females were administered liraglutide subcutaneously at doses of 0.01, 0.025 and 0.05 mg/kg/day from gestation day 6 through day 18 inclusive. Fetal weight was decreased and the incidence of total major fetal abnormalities was increased at all dose levels tested. Single cases of microphthalmia were noted at all dose levels. In addition, there was an increase in the fetal incidence of connected parietals in the high dose group, and a single case of split sternum in the 0.025 and 0.05 mg/kg/day. Minor abnormalities considered to be treatment-related were an increase in the incidence of jugal(s) connected/fused to maxilla at all dose levels and an increase in the incidence of bilobed/bifurcated gallbladder at 0.025 and 0.50 mg/kg/day. Studies for the carcinogenicity potential of liraglutide were also conducted in mice and rats. In both species, a dose-related increase in benign thyroid C-cell adenomas and malignant C-cell carcinomas were observed. Also, there was a treatment-related increase in the incidence and severity of focal C-cell hyperplasia in both male and female rats. In addition, there was a treatment-related increase in fibrosarcomas on the dorsal skin and subcutis, the body surface used for drug injection, in male mice. These fibrosarcomas were attributed to the high local concentration of drug near the injection site. Finally, liraglutide was negative with and without metabolic activation in the Ames test for mutagenicity and in a human peripheral blood lymphocyte chromosome aberration test for clastogenicity. Liraglutide was negative in repeat-dose in vivo micronucleus tests in rats. Hepatotoxicity In large clinical trials, serum enzyme elevations were no more common with liraglutide therapy than with placebo or comparator agents, and no instances of clinically apparent liver injury were reported. Since licensure, there has been a single case report of autoimmune hepatitis arising in a patient taking liraglutide. She did not improve with stopping liraglutide and ultimately required long term corticosteroid therapy, suggesting that the autoimmune hepatitis was independent of the drug therapy or that liraglutide triggered an underlying condition. Other cases of hepatotoxicity due to liraglutide have not been published and the product label does not list liver injury as an adverse event. Thus, liver injury due to liraglutide must be quite rare. Effects During Pregnancy and Lactation ◉ Summary of Use during Lactation No information is available on the excretion of liraglutide int milk or it clinical use during breastfeeding. Because liraglutide is a large peptide molecule with a molecular weight of 3751 daltons, the amount in milk is likely to be very low and absorption is unlikely because it is probably destroyed in the infant's gastrointestinal tract. Until more data become available, liraglutide should be used with caution during breastfeeding, especially while nursing a newborn or preterm infant. ◉ Effects in Breastfed Infants Relevant published information was not found as of the revision date. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. Protein Binding >98%. Interactions A single dose of an oral contraceptive combination product containing 0.03 mg ethinylestradiol and 0.15 mg levonorgestrel was administered under fed conditions and 7 hours after the dose of Victoza at steady state. Victoza lowered ethinylestradiol and levonorgestrel Cmax by 12% and 13%, respectively. There was no effect of Victoza on the overall exposure (AUC) of ethinylestradiol. Victoza increased the levonorgestrel AUC0-8 by 18%. Victoza delayed Tmax for both ethinylestradiol and levonorgestrel by 1.5 hr. A single dose of digoxin 1 mg was administered 7 hours after the dose of Victoza at steady state. The concomitant administration with Victoza resulted in a reduction of digoxin AUC by 16%; Cmax decreased by 31%. Digoxin median time to maximal concentration (Tmax) was delayed from 1 hr to 1.5 hr. A single dose of lisinopril 20 mg was administered 5 minutes after the dose of Victoza at steady state. The co-administration with Victoza resulted in a reduction of lisinopril AUC by 15%; Cmax decreased by 27%. Lisinopril median Tmax was delayed from 6 hr to 8 hr with Victoza. Victoza did not change the overall exposure (AUC) of griseofulvin following co-administration of a single dose of griseofulvin 500 mg with Victoza at steady state. Griseofulvin Cmax increased by 37% while median Tmax did not change. For more Interactions (Complete) data for Liraglutide (8 total), please visit the HSDB record page. |
References | |
Additional Infomation |
Therapeutic Uses
Hypoglycemic Agents Victoza is indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus. /Included in US product label/ Because of the uncertain relevance of the rodent thyroid C-cell tumor findings to humans, prescribe Victoza only to patients for whom the potential benefits are considered to outweigh the potential risk. Victoza is not recommended as first-line therapy for patients who have inadequate glycemic control on diet and exercise. ... Victoza is not a substitute for insulin. Victoza should not be used in patients with type 1 diabetes mellitus or for the treatment of diabetic ketoacidosis, as it would not be effective in these settings. EXPL THER: According to World Health Organization estimates, type 2 diabetes (T2D) is an epidemic (particularly in under developed countries) and a socio-economic challenge. This is even more relevant since increasing evidence points to T2D as a risk factor for Alzheimer's disease (AD), supporting the hypothesis that AD is a "type 3 diabetes" or "brain insulin resistant state". Despite the limited knowledge on the molecular mechanisms and the etiological complexity of both pathologies, evidence suggests that neurodegeneration/death underlying cognitive dysfunction (and ultimately dementia) upon long-term T2D may arise from a complex interplay between T2D and brain aging. Additionally, decreased brain insulin levels/signaling and glucose metabolism in both pathologies further suggests that an effective treatment strategy for one disorder may be also beneficial in the other. In this regard, one such promising strategy is a novel successful anti-T2D class of drugs, the glucagon-like peptide-1 (GLP-1) mimetics (e.g. exendin-4 or liraglutide), whose potential neuroprotective effects have been increasingly shown in the last years. In fact, several studies showed that, besides improving peripheral (and probably brain) insulin signaling, GLP-1 analogs minimize cell loss and possibly rescue cognitive decline in models of AD, Parkinson's (PD) or Huntington's disease. Interestingly, exendin-4 is undergoing clinical trials to test its potential as an anti-PD therapy. Herewith, we aim to integrate the available data on the metabolic and neuroprotective effects of GLP-1 mimetics in the central nervous system (CNS) with the complex crosstalk between T2D-AD, as well as their potential therapeutic value against T2D-associated cognitive dysfunction. C Drug Warnings /BOXED WARNING/ WARNING: RISK OF THYROID C-CELL TUMORS. Liraglutide causes dose-dependent and treatment-duration-dependent thyroid C-cell tumors at clinically relevant exposures in both genders of rats and mice. It is unknown whether Victoza causes thyroid C-cell tumors, including medullary thyroid carcinoma (MTC), in humans, as human relevance could not be ruled out by clinical or nonclinical studies. Victoza is contraindicated in patients with a personal or family history of MTC and in patients with Multiple Endocrine Neoplasia syndrome type 2 (MEN 2). Based on the findings in rodents, monitoring with serum calcitonin or thyroid ultrasound was performed during clinical trials, but this may have increased the number of unnecessary thyroid surgeries. It is unknown whether monitoring with serum calcitonin or thyroid ultrasound will mitigate human risk of thyroid C-cell tumors. Patients should be counseled regarding the risk and symptoms of thyroid tumors. There have been postmarketing reports of serious hypersensitivity reactions (e.g., anaphylactic reactions and angioedema) in patients treated with Victoza. If a hypersensitivity reaction occurs, the patient should discontinue Victoza and other suspect medications and promptly seek medical advice. Based on spontaneous postmarketing reports, acute pancreatitis, including fatal and non-fatal hemorrhagic or necrotizing pancreatitis, has been observed in patients treated with Victoza. After initiation of Victoza, observe patients carefully for signs and symptoms of pancreatitis (including persistent severe abdominal pain, sometimes radiating to the back and which may or may not be accompanied by vomiting). If pancreatitis is suspected, Victoza should promptly be discontinued and appropriate management should be initiated. If pancreatitis is confirmed, Victoza should not be restarted. Consider antidiabetic therapies other than Victoza in patients with a history of pancreatitis. In postmarketing reports, acute renal failure and worsening of chronic renal failure (which may require hemodialysis) have been reported with liraglutide. Some of these events occurred in patients without known underlying renal disease. Most of these events occurred in patients experiencing nausea, vomiting, diarrhea, or dehydration. Some of these events occurred in patients receiving liraglutide in combination with one or more agents known to affect renal function or hydration status. Liraglutide has not been found to be directly nephrotoxic in preclinical or clinical studies. Renal effects usually have been reversible with supportive treatment and discontinuance of potentially causative agents, including liraglutide. Clinicians should use caution when initiating liraglutide or escalating dosage in patients with renal impairment. For more Drug Warnings (Complete) data for Liraglutide (15 total), please visit the HSDB record page. Pharmacodynamics Liraglutide is a once-daily GLP-1 derivative for the treatment of type 2 diabetes. The prolonged action of liraglutide is achieved by attaching a fatty acid molecule at position 26 of the GLP-1 molecule, enabling it to bind reversibly to albumin within the subcutaneous tissue and bloodstream and be released slowly over time. Binding with albumin results in slower degradation and reduced elimination of liraglutide from the circulation by the kidneys compared to GLP-1. The effect of liraglutide is the increased secretion of insulin and decreased secretion of glucagon in response to glucose as well as slower gastric emptying. Liraglutide also does not adversely affect glucagon secretion in response to low blood sugar. |
Molecular Formula |
C172H265N43O51
|
---|---|
Molecular Weight |
3751.2020
|
Exact Mass |
3748.95
|
Elemental Analysis |
C, 55.07; H, 7.12; N, 16.06; O, 21.75
|
CAS # |
204656-20-2
|
Related CAS # |
Liraglutide-d8 triTFA; Liraglutide-13C5,15N tetraTFA
|
PubChem CID |
16134956
|
Sequence |
His-Ala-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-{Lys-N6-[N-(1-oxohexadecyl)-L-g-glutamyl]}-Glu-Phe-Ile-Ala-Trp-Leu-Val-Arg-Gly-Arg-Gly
|
SequenceShortening |
HAEGTFTSDVSSYL-{N6-[N-(1-oxohexadecyl)-L-γ-Etamyl]-Glu}-GQAAKEFIAWLVRGRG; HAEGTFTSDVSSYLEGQAA-{Lys-N6-[N-(1-oxohexadecyl)-L-g-glutamyl]}-EFIAWLVRGRG
|
Appearance |
White to off-white solid powder
|
LogP |
6.129
|
Hydrogen Bond Donor Count |
54
|
Hydrogen Bond Acceptor Count |
55
|
Rotatable Bond Count |
132
|
Heavy Atom Count |
266
|
Complexity |
8760
|
Defined Atom Stereocenter Count |
31
|
SMILES |
O=C([C@]([H])(C([H])([H])C([H])(C([H])([H])[H])C([H])([H])[H])N([H])C([C@]([H])(C([H])([H])C1=C([H])N([H])C2=C([H])C([H])=C([H])C([H])=C12)N([H])C([C@]([H])(C([H])([H])[H])N([H])C([C@]([H])([C@@]([H])(C([H])([H])[H])C([H])([H])C([H])([H])[H])N([H])C([C@]([H])(C([H])([H])C1C([H])=C([H])C([H])=C([H])C=1[H])N([H])C([C@]([H])(C([H])([H])C([H])([H])C(=O)O[H])N([H])C([C@]([H])(C([H])([H])C([H])([H])C([H])([H])C([H])([H])N([H])C(C([H])([H])C([H])([H])[C@@]([H])(C(=O)O[H])N([H])C(C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H])=O)=O)N([H])C([C@]([H])(C([H])([H])[H])N([H])C([C@]([H])(C([H])([H])[H])N([H])C([C@]([H])(C([H])([H])C([H])([H])C(N([H])[H])=O)N([H])C(C([H])([H])N([H])C([C@]([H])(C([H])([H])C([H])([H])C(=O)O[H])N([H])C([C@]([H])(C([H])([H])C([H])(C([H])([H])[H])C([H])([H])[H])N([H])C([C@]([H])(C([H])([H])C1C([H])=C([H])C(=C([H])C=1[H])O[H])N([H])C([C@]([H])(C([H])([H])O[H])N([H])C([C@]([H])(C([H])([H])O[H])N([H])C([C@]([H])(C([H])(C([H])([H])[H])C([H])([H])[H])N([H])C([C@]([H])(C([H])([H])C(=O)O[H])N([H])C([C@]([H])(C([H])([H])O[H])N([H])C([C@]([H])([C@@]([H])(C([H])([H])[H])O[H])N([H])C([C@]([H])(C([H])([H])C1C([H])=C([H])C([H])=C([H])C=1[H])N([H])C([C@]([H])([C@@]([H])(C([H])([H])[H])O[H])N([H])C(C([H])([H])N([H])C([C@]([H])(C([H])([H])C([H])([H])C(=O)O[H])N([H])C([C@]([H])(C([H])([H])[H])N([H])C([C@]([H])(C([H])([H])C1=C([H])N=C([H])N1[H])N([H])[H])=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)N([H])[C@]([H])(C(N([H])[C@]([H])(C(N([H])C([H])([H])C(N([H])[C@]([H])(C(N([H])C([H])([H])C(=O)O[H])=O)C([H])([H])C([H])([H])C([H])([H])N([H])/C(=N/[H])/N([H])[H])=O)=O)C([H])([H])C([H])([H])C([H])([H])N([H])/C(=N/[H])/N([H])[H])=O)C([H])(C([H])([H])[H])C([H])([H])[H]
|
InChi Key |
YSDQQAXHVYUZIW-QCIJIYAXSA-N
|
InChi Code |
InChI=1S/C172H265N43O51/c1-18-20-21-22-23-24-25-26-27-28-29-30-37-53-129(224)195-116(170(265)266)59-64-128(223)180-68-41-40-50-111(153(248)199-115(62-67-135(232)233)154(249)204-120(73-100-44-33-31-34-45-100)159(254)214-140(93(11)19-2)167(262)192-97(15)146(241)201-122(76-103-79-183-108-49-39-38-48-106(103)108)157(252)203-118(72-90(5)6)158(253)212-138(91(7)8)165(260)200-110(52-43-70-182-172(177)178)149(244)184-81-130(225)193-109(51-42-69-181-171(175)176)148(243)187-84-137(236)237)196-144(239)95(13)189-143(238)94(12)191-152(247)114(58-63-127(174)222)194-131(226)82-185-151(246)113(61-66-134(230)231)198-155(250)117(71-89(3)4)202-156(251)119(75-102-54-56-105(221)57-55-102)205-162(257)124(85-216)208-164(259)126(87-218)209-166(261)139(92(9)10)213-161(256)123(78-136(234)235)206-163(258)125(86-217)210-169(264)142(99(17)220)215-160(255)121(74-101-46-35-32-36-47-101)207-168(263)141(98(16)219)211-132(227)83-186-150(245)112(60-65-133(228)229)197-145(240)96(14)190-147(242)107(173)77-104-80-179-88-188-104/h31-36,38-39,44-49,54-57,79-80,88-99,107,109-126,138-142,183,216-221H,18-30,37,40-43,50-53,58-78,81-87,173H2,1-17H3,(H2,174,222)(H,179,188)(H,180,223)(H,184,244)(H,185,246)(H,186,245)(H,187,243)(H,189,238)(H,190,242)(H,191,247)(H,192,262)(H,193,225)(H,194,226)(H,195,224)(H,196,239)(H,197,240)(H,198,250)(H,199,248)(H,200,260)(H,201,241)(H,202,251)(H,203,252)(H,204,249)(H,205,257)(H,206,258)(H,207,263)(H,208,259)(H,209,261)(H,210,264)(H,211,227)(H,212,253)(H,213,256)(H,214,254)(H,215,255)(H,228,229)(H,230,231)(H,232,233)(H,234,235)(H,236,237)(H,265,266)(H4,175,176,181)(H4,177,178,182)/t93-,94-,95-,96-,97-,98+,99+,107-,109-,110-,111-,112-,113-,114-,115-,116-,117-,118-,119-,120-,121-,122-,123-,124-,125-,126-,138-,139-,140-,141-,142-/m0/s1
|
Chemical Name |
(2S)-5-[[(5S)-5-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S,3R)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-3-(1H-imidazol-5-yl)propanoyl]amino]propanoyl]amino]-4-carboxybutanoyl]amino]acetyl]amino]-3-hydroxybutanoyl]amino]-3-phenylpropanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-methylbutanoyl]amino]-3-hydroxypropanoyl]amino]-3-hydroxypropanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-methylpentanoyl]amino]-4-carboxybutanoyl]amino]acetyl]amino]-5-oxopentanoyl]amino]propanoyl]amino]propanoyl]amino]-6-[[(2S)-1-[[(2S)-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-carbamimidamido-1-[[2-[[(2S)-5-carbamimidamido-1-(carboxymethylamino)-1-oxopentan-2-yl]amino]-2-oxoethyl]amino]-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-6-oxohexyl]amino]-2-(hexadecanoylamino)-5-oxopentanoic acid
|
Synonyms |
NNC 90-1170; Liraglutide; NN 2211; NN-2211; NN2211; trade names: Saxenda; Victoza; Liraglutida; Liraglutidum
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO: ~100 mg/mL (~26.7 mM)
Water: 5~10 mg/mL (adjust pH to 3~4 with 1 M HCl) Ethanol: ~100 mg/mL |
---|---|
Solubility (In Vivo) |
5%DMSO + 40%PEG300 + 5%Tween 80 + 50%ddH2O: 5.0mg/ml (1.33mM) (Please use freshly prepared in vivo formulations for optimal results.)
|
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 0.2666 mL | 1.3329 mL | 2.6658 mL | |
5 mM | 0.0533 mL | 0.2666 mL | 0.5332 mL | |
10 mM | 0.0267 mL | 0.1333 mL | 0.2666 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.
Saxenda: Underlying Mechanisms and Clinical Outcomes
CTID: NCT02944500
Phase: Phase 4   Status: Active, not recruiting
Date: 2024-10-01