Osilodrostat (LCI699)

Alias: Osilodrostat;LCI699; Isturisa; LCI 699; LCI-699
Cat No.:V2622 Purity: ≥98%
Osilodrostat (LCI699; LCI-699;Isturisa) is a novel and potent inhibitor of 11β-hydroxylase and approved medication for the treatment of adults with Cushings disease.
Osilodrostat (LCI699) Chemical Structure CAS No.: 928134-65-0
Product category: Mineralocorticoid Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
2mg
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes

Other Forms of Osilodrostat (LCI699):

  • Osilodrostat phosphate
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Osilodrostat (LCI699; LCI-699; Isturisa) is a novel and potent inhibitor of 11β-hydroxylase and approved medication for the treatment of adults with Cushing's disease. Osilodrostat inhibits 11β-hydroxylase which is an enzyme catalyzing the final step of cortisol biosynthesis, thus can be used for all forms of Cushing's syndrome for patients who either cannot undergo pituitary gland surgery or have undergone the surgery but still have the disease. Current evidence indicates that the novel aldosterone inhibitor LCI699 is an effective and well-tolerated antihypertensive agent that lowers plasma aldosterone concentration and produces a mild ACTH-stimulated cortisol response suppressive effect.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Cortisol and aldosterone are inhibited by osilodrostat (LCI699; 0.01-10 μM; HAC15 cells, 17 primary human adrenocortical cell cultures, pituitary adenoma cells). Osilodrostat has minor effects on adrenal androgens and suppresses the build-up of corticosterone and 11-deoxycortisol [2].
ln Vivo
In Ang-II and ACTH-stimulated Sprague Dawley rats, osilodrostat (LCI699; 0.1-100 mg/kg; oral; once) inhibits the synthesis of aldosterone and corticosterone [1]. Osilodrostat (LCI699; 3-100 mg/kg; oral; once daily for 52 weeks) prolongs the survival of dTG rats by lowering mean arterial pressure [1].
Animal Protocol
Animal/Disease Models: Male Ang-II- and ACTH-stimulated Sprague Dawley rats[1]
Doses: 0.1, 0.3, 1 and 3 mg/kg (Ang-II-stimulated rats) and 1, 3, 10, 30 and 100 mg/ kg (ACTH-stimulated rats)
Route of Administration: Oral administration; once
Experimental Results: Inhibited the increase in plasma aldosterone concentrations stimulated by Ang II or ACTH in a dose-dependent manner.

Animal/Disease Models: dTG rats[1]
Doses: 3, 10, 30 and 100 mg/kg
Route of Administration: Oral administration; daily, for 52 weeks
Experimental Results: Increased fractional LV (systolic and diastolic) shortening, normalized LV isovolumic relaxation time to RR (IVRT/RR) ratio and myocardial cell size and decreased LV weight in a dose-dependent manner.
References
[1]. Ménard J, et, al. Aldosterone synthase inhibition: cardiorenal protection in animal disease models and translation of hormonal effects to human subjects. J Transl Med. 2014 Dec 10;12:340.
[2]. Creemers SG, et, al. Osilodrostat Is a Potential Novel Steroidogenesis Inhibitor for the Treatment of Cushing Syndrome: An In Vitro Study. J Clin Endocrinol Metab. 2019 Aug 1;104(8):3437-3449.
[3]. Li L, et, al. Osilodrostat (LCI699), a potent 11β-hydroxylase inhibitor, administered in combination with the multireceptor-targeted somatostatin analog pasireotide: A 13-week study in rats. Toxicol Appl Pharmacol. 2015 Aug 1;286(3):224-33.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C13H10FN3
Molecular Weight
227.24
CAS #
928134-65-0
Related CAS #
Osilodrostat phosphate;1315449-72-9
SMILES
FC1C([H])=C(C#N)C([H])=C([H])C=1[C@@]1([H])C([H])([H])C([H])([H])C2=C([H])N=C([H])N12
Synonyms
Osilodrostat;LCI699; Isturisa; LCI 699; LCI-699
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO:45 mg/mL (198.0 mM)
Water:15 mg/mL (66.0 mM)
Ethanol:45 mg/mL (198.0 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (11.00 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (11.00 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (11.00 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: ≥ 2.5 mg/mL (11.00 mM) (saturation unknown) in 10% EtOH + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear EtOH stock solution to 400 μL of PEG300 and mix evenly; then add 50 μL of Tween-80 to the above solution and mix evenly; then add 450 μL of normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 5: ≥ 2.5 mg/mL (11.00 mM) (saturation unknown) in 10% EtOH + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear EtOH stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 6: ≥ 2.5 mg/mL (11.00 mM) (saturation unknown) in 10% EtOH + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear EtOH stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.4006 mL 22.0032 mL 44.0063 mL
5 mM 0.8801 mL 4.4006 mL 8.8013 mL
10 mM 0.4401 mL 2.2003 mL 4.4006 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top