yingweiwo

Latanoprost (PHXA41, XA34)

Alias: PHXA41; PHXA-41; PHXA 41; XA34; XA-34; XA 34; Latanoprost, Xalatan, Catioprost; IYUZEH;
Cat No.:V15704 Purity: ≥98%
Latanoprost (PHXA-41, XA-34) is a novel prostaglandinF2α analogue that lowers the pressure by increasing the outflow of aqueous fluid from the eyes through the uvealsclearal tract.
Latanoprost (PHXA41, XA34)
Latanoprost (PHXA41, XA34) Chemical Structure CAS No.: 130209-82-4
Product category: GPR
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
25mg
50mg
100mg
250mg
Other Sizes

Other Forms of Latanoprost (PHXA41, XA34):

  • Latanoprost acid
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Latanoprost (PHXA-41, XA-34) is a novel prostaglandin F2α analogue that lowers the pressure by increasing the outflow of aqueous fluid from the eyes through the uvealsclearal tract. Latanoprost is an isopropyl ester prodrug, meaning it is inactive until it is hydrolyzed by esterases in the cornea to the biologically active acid. Latanoprost, in pure form, is an oily liquid. For the convenience of use, it is supplied as 200mg / mL in ethanol.

Biological Activity I Assay Protocols (From Reference)
Targets
FP Receptor
ln Vitro
In vitro, the three-dimensional (3D) reconstituted human corneal epithelia (HCE) were treated with PBS, BAK-latanoprost, PF-latanoprost, or 0.02% BAK for 24 hours followed or not followed by a 24 hour post incubation recovery period. Cellular viability was evaluated using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test at 24 hours and the apoptotic cells were counted using TUNEL labeling on frozen sections at 24 hours and 24 hours plus 24 hours. [1]
Considerable apoptosis was triggered in the top layer by benzoalkonium chloride-latanoprost (BAK-latanoprost) and 0.02% BAK, which was linked to a considerable reduction in cell viability. When compared to PBS, the moderate reduction in cell viability caused by Preservative-free latanoprost (PF-latanoprost) and the small number of apoptotic cells identified in the superficial layer did not reach statistical significance [1]. Comparing latanoprost (0.1 μM) to the control, cell viability rose considerably. Simultaneously, 0.1 μM latanoprost can strongly stimulate neurite formation in a manner akin to that of ciliary neurotrophic factor (CNTF) and raise p-Akt and p-mTOR expression levels. By controlling the FP receptor-mediated PI3K-Akt-mTOR signaling cascade, latanoprost can stimulate neurite growth [3]. Latanoprost (0.03 or 0.3 μg/mL) and bimatoprost (75% ± 27% and 75% ± 24%, respectively) enhanced MMP-9 activity in human CBSM cells [4].
ln Vivo
In beagle dogs, one drop of latanoprost results in significant miosis, peripheral iris lordosis, iridocorneal angle narrowing, and anterior chamber shallowing. Pupil diameter, ACA, and AOD (mean) decreased by 84%, 14%, and 16%, respectively, following the use of latanoprost [2].
Cell Assay
Differentiated RGC-5 cells were treated with latanoprost at different concentrations (0.1–10 μM). After treatment with latanoprost and/or inhibitors for 24 h, cell viability was evaluated using a cell counting kit-8 (CCK-8) (WST-8, Dojindo, Japan). The CCK-8 was used to count living cells by combining WST-8 [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium,monosodium salt] and 1-methoxy PMS. According to the supplier’s recommendations, 10 μl of kit reagent was added to the cells, treated as described above, in 96-well plates and incubated for 3 h. Cell viability was assayed by reading the absorbance at 450 nm on a 96-well plate reader. The absorbance reading was subtracted from background control. All experiments were performed in three wells on five separate experiments[2].
Animal Protocol
Thirty-five normal female beagle dogs were assessed using anterior segment optical coherence tomography (AS-OCT). One eye of each dog was scanned with the AS-OCT in the superotemporal quadrant. One drop of latanoprost 0.005% was applied topically, and the OCT scan was repeated 30 min later. Images were imported into ImageJ, and pupil diameter, anterior chamber angle, angle opening distance, angle recess area (ARA), anterior chamber hemifield, and anterior chamber depth were measured.[3]
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
This drug is rapidly absorbed in the cornea as an isopropyl ester prodrug and is then activated by the process of hydrolysis. A small amount of this drug is systemically absorbed. The Cmax of latanoprost in the systemic circulation is reached after 5 minutes and is measured to be 53 pg/mL. The Cmax in the aqueous humor is attained within 2 hours after administration. and has been estimated to be 15-30 ng/mL.
After hepatic beta-oxidation, the metabolites of latanoprost are primarily found to be excreted by the kidneys. About 88% of the latanoprost dose is recovered in the urine after topical administration. About 15% of a dose is reported to be excreted in the feces.
The volume of distribution of latanoprost is 0.16 ± 0.02 L/kg. The activated acid form of latanoprost can be measured in aqueous humor in the initial 4 hours post-administration, and it is measured in the plasma only for 1 hour following ophthalmic administration. This drug is more lipophilic than its parent prostaglandin and easily penetrates the cornea. It has been shown to cross the placenta in rats.
The systemic clearance of latanoprost is 7 mL/min/kg.
Metabolism / Metabolites
After corneal uptake, this prodrug is hydrolyzed and activated by esterases to become a pharmacologically active drug. The small portion of this drug that is able to reach the circulation is found to be metabolized by the liver to the 1,2-dinor and 1,2,3,4-tetranor metabolites through fatty acid beta-oxidation.
Biological Half-Life
The elimination half-life of latanoprost from the plasma is about 17 minutes. The elimination half-life of latanoprost from the eye is estimated at 2–3 hours.
Toxicity/Toxicokinetics
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No information is available on the use of latanoprost during breastfeeding. Because of its short half-life it is not likely to reach the bloodstream of the infant or cause any adverse effects in breastfed infants. Professional guidelines consider prostaglandin eye drops acceptable during breastfeeding. To substantially diminish the amount of drug that reaches the breastmilk after using eye drops, place pressure over the tear duct by the corner of the eye for 1 minute or more, then remove the excess solution with an absorbent tissue.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
Latanoprost is about 90% plasma protein-bound.
References

[1]. In vitro and in vivo comparative toxicological study of a new preservative-free latanoprost formulation. Invest Ophthalmol Vis Sci. 2012 Dec 13;53(13):8172-80.

[2]. Latanoprost promotes neurite outgrowth in differentiated RGC-5 cells via the PI3K-Akt-mTOR signaling pathway. Cell Mol Neurobiol. 2011 May;31(4):597-604.

[3]. The effect of topical latanoprost on anterior segment anatomic relationships in normal dogs. Vet Ophthalmol. 2013 Sep;16(5):370-6.

[4]. Effect of bimatoprost, latanoprost, and unoprostone on matrix metalloproteinases and their inhibitors in human ciliary body smooth muscle cells. Invest Ophthalmol Vis Sci. 2009 Nov;50(11):5259-65.

[5]. Prostaglandin Subtype-Selective and Non-Selective IOP-Lowering Comparison in Monkeys.

Additional Infomation
Latanoprost is a prostaglandin Falpha that is the isopropyl ester prodrug of latanoprost free acid. Used in the treatment of open-angle glaucoma and ocular hypertension. It has a role as an antiglaucoma drug, an antihypertensive agent, an EC 4.2.1.1 (carbonic anhydrase) inhibitor and a prodrug. It is a prostaglandins Falpha, a triol and an isopropyl ester. It is functionally related to a latanoprost free acid.
Latanoprost is a prodrug analog of prostaglandin F2 alpha that is used to treat elevated intraocular pressure (IOP). It was initially approved by the FDA in 1998. Latanoprost is the first topical prostaglandin F2 alpha analog used for glaucoma treatment. It has been found to be well-tolerated and its use does not normally result in systemic adverse effects like other drugs used to treat elevated intraocular pressure, such as [Timolol]. Another benefit latanoprost is that it can be administered once a day.
Latanoprost is a Prostaglandin Analog.
Latanoprost is a prostaglandin F2alpha analogue and a prostanoid selective FP receptor agonist with an ocular hypertensive effect. Latanoprost increases uveoscleral outflow and thereby reduces intraocular pressure.
A prostaglandin F analog used to treat OCULAR HYPERTENSION in patients with GLAUCOMA.
See also: Latanoprost; netarsudil dimesylate (component of); Latanoprost; timolol maleate (component of); Latanoprost; netarsudil mesylate (component of).
Drug Indication
Latanoprost is indicated for the reduction of elevated intraocular pressure in patients who have been diagnosed with open-angle glaucoma or ocular hypertension. It is available as monotherapy or in a combination product with [netarsudil] or [timolol]. In Canada, latanoprost is also indicated to treat elevated intraocular pressure due to angle-closure glaucoma that has been treated with peripheral iridotomy or laser iridoplasty.
Treatment of glaucoma
Mechanism of Action
Elevated intraocular pressure leads to an increased risk of glaucomatous visual field loss. The higher the intraocular pressure, the higher the risk of damage to the optic nerve and loss of visual field. Latanoprost selectively stimulates the prostaglandin F2 alpha receptor and this results in a decreased intraocular pressure (IOP) via the increased outflow of aqueous humor, which is often implicated in cases of elevated intraocular pressure. Possible specific mechanisms of the abovementioned increased aqueous outflow are the remodeling of the extracellular matrix and regulation of matrix metalloproteinases. These actions result in higher tissue permeability related to humor outflow pathways, which likely change outflow resistance and/or outflow rates.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C26H40O5
Molecular Weight
432.6
Exact Mass
432.287
Elemental Analysis
C, 72.19; H, 9.32; O, 18.49
CAS #
130209-82-4
Related CAS #
41639-83-2 (acid); 130209-82-4; 130209-82-4 (ethanol solution)
PubChem CID
5311221
Appearance
Colorless to light yellow liquid at room temperature
Density
1.1±0.1 g/cm3
Boiling Point
583.8±50.0 °C at 760 mmHg
Flash Point
188.3±23.6 °C
Vapour Pressure
0.0±1.7 mmHg at 25°C
Index of Refraction
1.538
LogP
3.65
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
14
Heavy Atom Count
31
Complexity
526
Defined Atom Stereocenter Count
5
SMILES
O=C(OC(C)C)CCC/C=C\C[C@@H]1[C@@H](CC[C@@H](O)CCC2=CC=CC=C2)[C@H](O)C[C@@H]1O
InChi Key
GGXICVAJURFBLW-CEYXHVGTSA-N
InChi Code
InChI=1S/C26H40O5/c1-19(2)31-26(30)13-9-4-3-8-12-22-23(25(29)18-24(22)28)17-16-21(27)15-14-20-10-6-5-7-11-20/h3,5-8,10-11,19,21-25,27-29H,4,9,12-18H2,1-2H3/b8-3-/t21-,22+,23+,24-,25+/m0/s1
Chemical Name
propan-2-yl (Z)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(3R)-3-hydroxy-5-phenylpentyl]cyclopentyl]hept-5-enoate
Synonyms
PHXA41; PHXA-41; PHXA 41; XA34; XA-34; XA 34; Latanoprost, Xalatan, Catioprost; IYUZEH;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ~100 mg/mL (~231.17 mM)
Ethanol : ~100 mg/mL (~231.17 mM)
DMSO : ≥ 100 mg/mL (~231.17 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (4.81 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (4.81 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (4.81 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 100 mg/mL (231.17 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.3116 mL 11.5580 mL 23.1160 mL
5 mM 0.4623 mL 2.3116 mL 4.6232 mL
10 mM 0.2312 mL 1.1558 mL 2.3116 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
Stop Retinal Ganglion Cell Dysfunction Study
CTID: NCT02390284
Phase: Phase 3
Status: Active, not recruiting
Date: 2024-06-24
Evaluation of Latanoprost Combined With Fractional Erbium- YAG Laser
CTID: NCT06239324
Phase: Phase 1/Phase 2
Status: Recruiting
Date: 2024-04-16
Pharmacokinetics, Efficacy and Safety Assessment of T2345 Compared With Active Comparator in Newly Diagnosed Patients With Open-angle Glaucoma or Ocular Hypertension
CTID: NCT01494753
Phase: Phase 2
Status: Completed
Date: 2024-02-07
OPC-1085EL in the Treatment of Primary Open Angle Glaucoma or Ocular Hypertension in Chinese Subjects
CTID: NCT05583474
Phase: Phase 3
Status: Recruiting
Date: 2024-01-05
Comparison of Latanoprost Vs. Timolol
CTID: NCT00579969
Phase: Phase 2
Status: Terminated
Date: 2023-12-21
Contact Us