Irinotecan (CPT-11)

Alias: CPT-11; (+)-Irinotecan; Camptosar; Irinophore C; CPT 11;CPT11; Irinotecan; Irinotecan lactone; Irinotecanum
Cat No.:V1393 Purity: ≥98%
Irinotecan (also known as CPT-11; Camptosar; Irinophore C; CPT11; Irinotecan lactone; Irinotecanum), a semisynthetic analog of camptothecin and the prodrug of 7-ethyl-10-hydroxy-camptothecin (SN-38), is a topoisomerase I inhibitor approved for use as an anticancer drug.
Irinotecan (CPT-11) Chemical Structure CAS No.: 97682-44-5
Product category: Topoisomerase
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
25mg
50mg
100mg
250mg
500mg
1g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Irinotecan (also known as CPT-11; Camptosar; Irinophore C; CPT11; Irinotecan lactone; Irinotecanum), a semisynthetic analog of camptothecin and the prodrug of 7-ethyl-10-hydroxy-camptothecin (SN-38), is a topoisomerase I inhibitor approved for use as an anticancer drug. In LoVo and HT-29 cells, it inhibits topoisomerase I with IC50 values of 15.8 μM and 5.17 μM, respectively.

Biological Activity I Assay Protocols (From Reference)
Targets
Topoisomerase I
ln Vitro

In vitro activity: Irinotecan is a topoisomerase I inhibitor. Irinotecan inhibits the growth of HT-29 and LoVo cells, causing comparable amounts of cleavable complexes in both cells, with IC50s of 5.17 ± 1.4 μM and 15.8 ± 5.1 μM, respectively[2]. With an inhibitory concentration (IC50) of 1.3 microM, irinotecan inhibits the growth of human umbilical vein endothelial cells (HUVEC)[3].

ln Vivo
Irinotecan (CPT-11, 5 mg/kg) significantly slows the growth of tumors when injected intratumorally into rats for five days straight over the course of two weeks. In mice, the same effect is achieved by continuously infusing osmotic minipump fluid intraperitoneally. But Irinotecan (10 mg/kg) has no effect on the tumor's ability to grow intraperitoneally[1]. In athymic female mice, irinotecan (CPT-11, 100-300 mg/kg, i.p.) appears to inhibit the growth of HT-29 xenograft tumors by day 21. At doses of 250 and 300 mg/kg, respectively, both the Irinotecan plus TSP-1 (10 mg/kg per day) and the Irinotecan (150 mg/kg) in combination with TSP-1 (20 mg/kg per day) groups are more effective than Irinotecan alone and inhibit tumor growth 84% and 89%, respectively[3].
Cell Assay
In 20 cm2 dishes, exponentially growing cells are seeded with the ideal number of cells for each cell line (20,000 for LoVo cells, 100,000 for HT-29 cells). They receive treatment with irinotecan or SN-38 at increasing concentrations for a single cell doubling period (24 hours for LoVo cells and 40 hours for HT-29 cells) after two days. Following a 0.15 M NaCl wash, the cells are cultured in normal medium for two more doubling times before being separated from the support using trypsin-EDTA and counted using a hemocytometer. Subsequently, the drug concentrations that cause a 50% inhibition of growth in cells treated with the drug are estimated as the IC50 values[2].
Animal Protocol
One cycle of therapy consists of injecting 0.1 cc of the suitable solution intraperitoneally (IV) with irinotecan at a dose of 5 mg/kg per day for 5 days on two consecutive weeks, separated by a 7-day rest period. Over the course of eight weeks, rats receive three cycles. By intratumoral injection, control animals are given 0.1 cc of sterile 0.9% sodium chloride solution according to the same protocol as group II animals[1].
References

[1]. Antitumoral effect of irinotecan (CPT-11) on an experimental model of malignant neuroectodermal tumor. J Neurooncol. 2002 Feb;56(3):219-26.

[2]. Determinants of the cytotoxicity of irinotecan in two human colorectal tumor cell lines. Cancer Chemother Pharmacol. 2002 Apr;49(4):329-35. Epub 2002 Jan 30.

[3]. Thrombospondin-1 plus irinotecan: a novel antiangiogenic-chemotherapeutic combination that inhibits the growth of advanced human colon tumor xenografts in mice. Cancer Chemother Pharmacol. 2004 Mar;53(3):261-6. Epub 2003 Dec 5.

[4]. A case study of an integrative genomic and experimental therapeutic approach for rare tumors: identification of vulnerabilities in a pediatric poorly differentiated carcinoma. Genome Med. 2016 Oct 31;8(1):116.

[5]. Chemotherapeutic agent CPT-11 eliminates peritoneal resident macrophages by inducing apoptosis. Apoptosis. 2016 Feb;21(2):130-42.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C33H38N4O6
Molecular Weight
586.68
Exact Mass
586.28
Elemental Analysis
C, 67.56; H, 6.53; N, 9.55; O, 16.36
CAS #
97682-44-5
Appearance
Solid powder
SMILES
CCC1=C2CN3C(=CC4=C(C3=O)COC(=O)[C@@]4(CC)O)C2=NC5=C1C=C(C=C5)OC(=O)N6CCC(CC6)N7CCCCC7
InChi Key
UWKQSNNFCGGAFS-XIFFEERXSA-N
InChi Code
InChI=1S/C33H38N4O6/c1-3-22-23-16-21(43-32(40)36-14-10-20(11-15-36)35-12-6-5-7-13-35)8-9-27(23)34-29-24(22)18-37-28(29)17-26-25(30(37)38)19-42-31(39)33(26,41)4-2/h8-9,16-17,20,41H,3-7,10-15,18-19H2,1-2H3/t33-/m0/s1
Chemical Name
[(19S)-10,19-diethyl-19-hydroxy-14,18-dioxo-17-oxa-3,13-diazapentacyclo[11.8.0.02,11.04,9.015,20]henicosa-1(21),2,4(9),5,7,10,15(20)-heptaen-7-yl] 4-piperidin-1-ylpiperidine-1-carboxylate
Synonyms
CPT-11; (+)-Irinotecan; Camptosar; Irinophore C; CPT 11;CPT11; Irinotecan; Irinotecan lactone; Irinotecanum
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 7~25 mg/mL (11.9~42.6 mM)
Water: <1 mg/mL
Ethanol: <1 mg/mL
Solubility (In Vivo)
30%Propylene glycol, 5%Tween 80, 65% D5W: 30 mg/mL
 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.7045 mL 8.5225 mL 17.0451 mL
5 mM 0.3409 mL 1.7045 mL 3.4090 mL
10 mM 0.1705 mL 0.8523 mL 1.7045 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT02631733 Active
Recruiting
Drug: Irinotecan Sucrosofate
Drug: Ferumoxytol
Malignant Solid Neoplasm National Cancer Institute
(NCI)
May 31, 2017 Phase 1
NCT03263429 Active
Recruiting
Drug: Irinotecan Hydrochloride
(phase I only)
Biological: Panitumumab
Colorectal Cancer
Metastatic Colorectal Cancer
Vanderbilt-Ingram Cancer Center August 23, 2017 Phase 1
Phase 2
NCT04641871 Active
Recruiting
Drug: Irinotecan
Drug: Pevonedistat
Recurrent Lymphoma
Refractory Lymphoma
Children's Oncology Group January 11, 2018 Phase 1
NCT03323034 Active
Recruiting
Drug: Irinotecan Hydrochloride
Biological: Dinutuximab
High Risk Neuroblastoma
Recurrent Neuroblastoma
Children's Oncology Group July 8, 2019 Phase 2
NCT03567629 Active
Recruiting
Drug: Irinotecan
Drug: Oxaliplatin
mCRC Peking University May 29, 2018 Phase 2
Biological Data
  • Genome Med . 2016 Oct 31;8(1):116.
Contact Us