INF39

Alias: INF-39; INF39; INF 39
Cat No.:V2031 Purity: ≥98%
INF39 (INF-39; INF 39), an acrylate derivative, is a potent, irreversible andnontoxic inhibitor of NLRP3 with potential anti-inflammatory activity.
INF39 Chemical Structure CAS No.: 866028-26-4
Product category: NLR
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

INF39 (INF-39; INF 39), an acrylate derivative, is a potent, irreversible and nontoxic inhibitor of NLRP3 with potential anti-inflammatory activity. It is able to block the release of IL-1β (interleukin-1β) from macrophages. Pharmacological inhibition of NLRP3 inflammasome activation by INF39 may offer a new approach in the treatment of inflammatory bowel disease. In vivo studies confirmed the ability of the selected lead to alleviate the effects of colitis induced by 2,4-dinitrobenzenesulfonic acid in rats after oral administration. Bioluminescence resonance energy transfer experiments proved that INF39 was able to directly interfere with NLRP3 activation in cells.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
At 10 μM, ATP and nigericin may both strongly suppress the release of IL-1β, which is triggered by INF39. INF39 inhibits the macrophages' pyroptosis and caspase-1 activation. INF39 has the ability to inhibit both the NF-κB pathway and NLRP3 activation. Although it does not specifically target caspase-1 activity, INF39 may interact with Cys-SH residues in the cysteine protease caspase-1's active site. It is possible for INF39 to disrupt the basal NLRP3 conformation by lowering the steady state (or basal) BRET signal of NLRP3 without impairing cell survival. INF39 affects a second step of NLRP3 conformational change that may be connected to the receptor's ATPase activity and independent of the decrease in intracellular K+. However, it does not prevent the first conformational changes that NLRP3 experiences upon sensing the decrease in intracellular K+. INF39 travels without changing chemically to reach the intestinal epithelium. It is probably going to operate locally at the mucosal epithelial level after being absorbed into epithelial cells[1].
ln Vivo
Rats given 2,4-dinitrobenzenesulfonic acid treatment exhibit decreased colonic and systemic inflammation upon oral delivery of INF39. Adequate increases in body weight are noted in inflammatory rats receiving INF39 (12.5, 25, and 50 mg/kg). Spleen weight increases significantly (+39.3%) after receiving DNBS treatment. INF39 treatment considerably reduces such an increase (+2.2, +4.3, and +4.8% at 12.5, 25, and 50 mg/kg, respectively). The reduction in colonic length (−19, −13, and −8% at 12.5, 25, and 50 mg/kg, respectively) is dose-dependently attenuated by the inhibition of NLRP3 inflammasome complex with INF39. The macroscopic damage score in rats treated with INF39 significantly decreased (to 4.7 at 12.5 mg/kg, 3.1 at 25 mg/kg, and 2.8 at 50 mg/kg). In rats treated with DNBS, oral treatment of INF39 lowers levels of TNF, IL-1β, and colonic myeloperoxidase[1].
Animal Protocol
12.5, 25, 50 mg/kg; oral gavage
Rats with inflammation
References
[1]. Cocco M, et al. Development of an Acrylate Derivative Targeting the NLRP3 Inflammasome for the Treatment of Inflammatory Bowel Disease.J Med Chem. 2017 May 11;60(9):3656-3671
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C12H13CLO2
Molecular Weight
224.68
CAS #
866028-26-4
Related CAS #
866028-26-4
SMILES
ClC1=C(CC(C(OCC)=O)=C)C=CC=C1
Chemical Name
Ethyl 2-(2-chlorobenzyl)acrylate
Synonyms
INF-39; INF39; INF 39
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: >10 mM
Water: NA
Ethanol: NA
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (11.13 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (11.13 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (11.13 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.4508 mL 22.2539 mL 44.5077 mL
5 mM 0.8902 mL 4.4508 mL 8.9015 mL
10 mM 0.4451 mL 2.2254 mL 4.4508 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • INF39

    2017 May 11;60(9):3656-3671. Graphic abstract: Compound 11 is IFN39

Contact Us Back to top