yingweiwo

Huperzine B

Alias: Fordimine; Huperzine B; 103548-82-9; Fordimine; 1gpn; CHEMBL245079; Lycodin-1(18H)-one, 8,15-didehydro-; (-)-Huperzine B; (1R,9R,10R)-16-methyl-6,14-diazatetracyclo[7.5.3.01,10.02,7]heptadeca-2(7),3,16-trien-5-one; (–)-Huperzine B
Cat No.:V34398 Purity: =96.73%
Huperzine B is a Lycoris alkaloid extracted from Huperzia serrata and a selective acetylcholinesterase (AChE) inhibitor.
Huperzine B
Huperzine B Chemical Structure CAS No.: 103548-82-9
Product category: Natural Products
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: =96.73%

Product Description
Huperzine B is a naturally occurring Lycoris alkaloid extracted from Huperzia serrata and a selective acetylcholinesterase (AChE) inhibitor. Huperzine B may be used to improve Alzheimer's disease (AD).
Biological Activity I Assay Protocols (From Reference)
Targets
Natural alkaloid; acetylcholinesterase (AChE)
ln Vitro
A number of studies indicate that free radicals are involved in the neurodegeneration in Alzheimer's disease (AD). The present study was mainly conducted to examine the effect of Huperzine B on H(2)O(2) induced toxicity in rat pheochromocytoma line PC12 by measuring cell lesion, level of lipid peroxidation and antioxidant enzyme activities. Following a 30 min exposure of the cells to H(2)O(2) (150 microM), a marked decrease in cell survival, activities of glutathione peroxidase and catalase as well as increased production of malondialdehyde (MDA) were found. Pretreatment of the cells with huperzine B (10-100 microM) prior to H(2)O(2) exposure significantly elevated the cell survival, antioxidant enzyme activities and decreased the level of MDA. The above-mentioned neuroprotective effects are also observed with tacrine (1 microM), donepezil (10 microM) and galanthamine (10 microM), suggesting that the neuroprotective effects of cholinesterase inhibitor might partly contribute to the clinical efficacy in AD treatment[1].
Enzyme Assay
Natural (-)-huperzine B (HupB), isolated from Chinese medicinal herb, displayed moderate inhibitory activity of acetylcholinesterase (AChE). Based on the active dual-site of AChE, a series of novel derivatives of bis- and bifunctional HupB were designed and synthesized. The AChE inhibition potency of most derivatives of HupB was enhanced about 2-3 orders of magnitude as compared with the parental HupB. Among bis-HupB derivatives, 12h exhibited the most potent in the AChE inhibition and has been evaluated for its pharmacological actions in vivo on ChE inhibition, cognitive enhancement, and neuroprotection. The docking study on the bis-HupB derivatives 12 series with TcAChE has demonstrated that the ligands bound to the dual-site of the enzyme in different level[2].
References

[1]. Huperzine B, a novel acetylcholinesterase inhibitor, attenuates hydrogen peroxide induced injury in PC12 cells. Neurosci Lett. 2000 Sep 29;292(1):41-4.

[2]. Study on dual-site inhibitors of acetylcholinesterase: Highly potent derivatives of bis- and bifunctional huperzine B. Bioorg Med Chem. 2007 Feb 1;15(3):1394-408.

Additional Infomation
Huperzine b is a phenanthrol.
Huperzine B is a novel acetylcholinesterase inhibitor.
Huperzine b has been reported in Huperzia serrata, Huperzia miyoshiana, and other organisms with data available.
Drug Indication
Under investigation for the treatment of Alzheimer's disease.
Mechanism of Action
Huperzine B has been found to be an inhibitor of the enzyme acetylcholinesterase. This is the same mechanism of action of pharmaceutical drugs such as galantamine and donepezil used to treat Alzheimer's disease.
Pharmacodynamics
Huperzine B is an alkaloid derived from Huperzia serrata (which is available as an herbal product in the US). It is under investigation as an acetylcholinesterase inhibitor. Clinical trials in China have shown that huperzine B is comparably effective to the drugs currently on the market, and may even be somewhat safer in terms of side effects.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C16H20N2O
Molecular Weight
256.3428
Exact Mass
256.157
Elemental Analysis
C, 74.97; H, 7.86; N, 10.93; O, 6.24
CAS #
103548-82-9
PubChem CID
5462442
Appearance
White to off-white solid powder
Density
1.2±0.1 g/cm3
Boiling Point
533.5±50.0 °C at 760 mmHg
Flash Point
216.4±30.3 °C
Vapour Pressure
0.0±1.4 mmHg at 25°C
Index of Refraction
1.624
LogP
1.98
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
2
Rotatable Bond Count
0
Heavy Atom Count
19
Complexity
543
Defined Atom Stereocenter Count
3
SMILES
O=C1C([H])=C([H])C2=C(C([H])([H])[C@]3([H])C([H])=C(C([H])([H])[H])C([H])([H])[C@]42[C@]3([H])C([H])([H])C([H])([H])C([H])([H])N4[H])N1[H]
InChi Key
YYWGABLTRMRUIT-HWWQOWPSSA-N
InChi Code
InChI=1S/C16H20N2O/c1-10-7-11-8-14-13(4-5-15(19)18-14)16(9-10)12(11)3-2-6-17-16/h4-5,7,11-12,17H,2-3,6,8-9H2,1H3,(H,18,19)/t11-,12+,16+/m0/s1
Chemical Name
(1R,9R,10R)-16-methyl-6,14-diazatetracyclo[7.5.3.01,10.02,7]heptadeca-2(7),3,16-trien-5-one
Synonyms
Fordimine; Huperzine B; 103548-82-9; Fordimine; 1gpn; CHEMBL245079; Lycodin-1(18H)-one, 8,15-didehydro-; (-)-Huperzine B; (1R,9R,10R)-16-methyl-6,14-diazatetracyclo[7.5.3.01,10.02,7]heptadeca-2(7),3,16-trien-5-one; (–)-Huperzine B
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~25 mg/mL (~97.53 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 1 mg/mL (3.90 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 10.0 mg/mL clear DMSO stock solution to 400 μL of PEG300 and mix evenly; then add 50 μL of Tween-80 to the above solution and mix evenly; then add 450 μL of normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 1 mg/mL (3.90 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 10.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 1 mg/mL (3.90 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 10.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.9011 mL 19.5053 mL 39.0107 mL
5 mM 0.7802 mL 3.9011 mL 7.8021 mL
10 mM 0.3901 mL 1.9505 mL 3.9011 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us