GW843682X

Alias: GW843682X; GW-843682X; GW 843682X
Cat No.:V4918 Purity: ≥98%
GW843682X is a novel, potent, selective, ATP-competitive inhibitor of polo-like kinase 1 (PLK1) and polo-like kinase 3 (PLK3) with IC50s of 2.2 nM and 9.1 nM, respectively.
GW843682X Chemical Structure CAS No.: 660868-91-7
Product category: PLK
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

GW843682X is a novel, potent, selective, ATP-competitive inhibitor of polo-like kinase 1 (PLK1) and polo-like kinase 3 (PLK3) with IC50s of 2.2 nM and 9.1 nM, respectively. It exhibits selectivity against approximately 30 other kinases that is greater than 100-fold. GW843682X caused 5-8F cells to undergo apoptosis and inhibited their proliferation in a dose-dependent manner (IC50=62.5-125nmol/L). By down-regulating the expression of the IAP gene, GW843682X demonstrated remarkable cytotoxic effects on nasopharyngeal carcinoma 5-8F cells. This suggests that GW843682X may develop into a novel therapeutic agent for nasopharyngeal carcinoma.

Biological Activity I Assay Protocols (From Reference)
Targets
PLK1 (IC50 = 2.2 nM); PLK3 (IC50 = 9.1 nM); PDGFR1β (IC50 = 160 nM); VEGFR2 (IC50 = 360 nM); Aurora A (IC50 = 4800 nM); CDK2/cyclin A (IC50 = 7600 nM)
ln Vitro
GW843682X (compound 1) is effectively suppresses the growth of tumor cells, as demonstrated by IC50 values of 0.41, 0.57, 0.11, 0.38, and 0.70 μM for HeLa, A549, H460, and HCT116 cell lines. With an IC50 of 0.14 μM, GW843682X dose-dependently inhibits PLK1 phosphorylation of Ser15-p53. GW843682X (3 μM) treatment for 24, 48, and 72 hours results in a strong G2-M arrest in HDF cells and H460 cells. GW843682X (5 μM) causes H460 cells to undergo apoptosis as opposed to HDF cells[1]. At a 120 nM EC50, GW843682X suppresses the growth of U937 cells. U937 cells' 50% mitotic entry is suppressed when GW843682X (500 nM) and 5 µM VP-16 are combined[2]. Inhibiting the growth of acute leukemia cells, GW843682X (0.06-1μM) enhances vincristine's anti-proliferative qualities. Leukemia cells undergo apoptosis when exposed to GW843682X (0.1–1 μM) in a manner that is dependent on both time and dose. Bcl-xl is dephosphorylated in leukemia cells by GW843682X (0.5–1 μM)[3].
Enzyme Assay
Trichoplusia ni cells infected with baculoviruses are used to prepare PLK1 and PLK3 proteins. The following is the method used to determine PLK1 and PLK3 enzyme activity. Every measurement was made in an environment where the amount of signal produced rose linearly with the enzyme and time. Test compounds are added at varying known concentrations in 100% DMSO to white 384-well assay plates (0.1 μL for 10 μL and some 20 μL assays, 1 μL for some 20 μL assays). As controls, DMSO (1-5% final) and EDTA (65 mM) are employed. The components of the reaction mix at 22°C are as follows: pH 7.2 HEPES with a concentration of 25 mM, 15 mM MgCl2, 1 μM ATP, 0.05 μCi/well [γ-33P]ATP (10 Ci/mmol), 1 μM substrate peptide (Biotin-Ahx-SFNDTLDFD), 0.15 mg/mL bovine serum albumin, 1 mM DTT, and either 2 nM PLK1 kinase domain or 5 nM full-length PLK3. Using automated liquid handlers, quickly add 10 or 20 μL of Reaction Mix to each well after adding the enzyme, and then incubate for 1 to 1.5 hours at 22°C. Using 50 μL of stop mix [50 mM EDTA, 4.0 mg/mL streptavidin SPA beads in Dulbecco's PBS (without Mg2+ and Ca2+), 50 μM ATP] per well, the 20 μL enzymatic reactions are terminated. Ten microliters (50 microliters) of stop mix—three milliliters of streptavidin-coupled SPA Imaging beads in Dulbecco's PBS (without Mg2+ and Ca2+) and fifty microliters of EDTA—per well are used to halt the ten microliter reactions. The plates are either sealed, spun at 500 × g for a minute or left to settle overnight, and then counted in Packard TopCount for 30 seconds per well or imaged using a Viewlux imager. In comparison to the results obtained in control (DMSO-only) wells, the signal above background (EDTA controls) is converted to a percent inhibition[1].
Cell Assay
Data analysis and experimentation are done. Specifically, in these assays, 2,000 H460 cells are plated per well, 5,000 HDF cells are plated per well, and 7,000 and 6,000 per well, respectively, are plated in a 96-well plate for the drug-resistant cell line MES-SA/DX5 and its sensitive parent line MES-SA. Throughout the three days of the experiment, these densities enabled the vehicle controls to grow logarithmically. The compound (30-0.00152 μM) is subjected to threefold dilutions in three different media: low-glucose DMEM, which contains 5% FBS, 50 μg/mL gentamicin, and 0.3% (v/v) DMSO (HDF cells); RPMI 1640, which contains 5% FBS, 50 μg/mL gentamicin, and 0.3% (v/v) DMSO (H460); or McCoy's 5A, which contains 5% FBS, 50 μg/mL gentamicin, and 0.3% (v/v) DMSO (MES-SA and MES-SA/DX5)[1].
References

[1]. In vitro biological activity of a novel small-molecule inhibitor of polo-like kinase 1. Mol Cancer Ther. 2007 Feb;6(2):450-9. Epub 2007 Jan 31.

[2]. Evaluation of Polo-like Kinase 1 inhibition on the G2/M checkpoint in Acute Myelocytic Leukaemia. Eur J Pharmacol. 2008 Sep 4;591(1-3):102-5.

[3]. A novel treatment strategy targeting polo-like kinase 1 in hematological malignancies. Leukemia. 2009 Sep;23(9):1564-76.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H18N3O4F3S
Molecular Weight
477.45622
Exact Mass
477.10
Elemental Analysis
C, 55.34; H, 3.80; F, 11.94; N, 8.80; O, 13.40; S, 6.71
CAS #
660868-91-7
Related CAS #
660868-91-7
Appearance
Solid powder
SMILES
COC1=C(C=C2C(=C1)N=CN2C3=CC(=C(S3)C(=O)N)OCC4=CC=CC=C4C(F)(F)F)OC
InChi Key
JSKUWFIZUALZLX-UHFFFAOYSA-N
InChi Code
InChI=1S/C22H18F3N3O4S/c1-30-16-7-14-15(8-17(16)31-2)28(11-27-14)19-9-18(20(33-19)21(26)29)32-10-12-5-3-4-6-13(12)22(23,24)25/h3-9,11H,10H2,1-2H3,(H2,26,29)
Chemical Name
5-(5,6-dimethoxybenzimidazol-1-yl)-3-[[2-(trifluoromethyl)phenyl]methoxy]thiophene-2-carboxamide
Synonyms
GW843682X; GW-843682X; GW 843682X
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 33.3~95 mg/mL (69.8~199 mM)
Ethanol: ~3 mg/mL (~6.3 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 2.5 mg/mL (5.24 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (5.24 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.0944 mL 10.4721 mL 20.9442 mL
5 mM 0.4189 mL 2.0944 mL 4.1888 mL
10 mM 0.2094 mL 1.0472 mL 2.0944 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top