GSK369796 Dihydrochloride

Alias: GSK369796 dihydrochloride; GSK 369796; GSK-369796; GSK369796; N-tert-Butyl isoquine.
Cat No.:V3563 Purity: ≥98%
GSK369796 dihydrochloride is a novel, potent and effectiveantimalarialand inhibitshERG potassium ion channelrepolarization with anIC50of 7.5 μM.
GSK369796 Dihydrochloride Chemical Structure CAS No.: 1010411-21-8
Product category: Potassium Channel
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description

GSK369796 dihydrochloride is a novel, potent and effective antimalarial and inhibits hERG potassium ion channel repolarization with an IC50 of 7.5 μM. It is a 4-aminoquinoline drug candidate selected and developed as part of a public-private partnership between academics at Liverpool, MMV, and GSK pharmaceuticals. This molecule was rationally designed based on chemical, toxicological, pharmacokinetic, and pharmacodynamic considerations and was selected based on excellent activity against Plasmodium falciparum in vitro and rodent malaria parasites in vivo. The optimized chemistry delivered this novel synthetic quinoline in a two-step procedure from cheap and readily available starting materials. The molecule has a full industry standard preclinical development program allowing first into humans to proceed. Employing chloroquine (1) and amodiaquine (2) as comparator molecules in the preclinical plan, the first preclinical dossier of pharmacokinetic, toxicity, and safety pharmacology has also been established for the 4-aminoquinoline antimalarial class. These studies have revealed preclinical liabilities that have never translated into the human experience. This has resulted in the availability of critical information to other drug development teams interested in developing antimalarials within this class.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
GSK369796 DiHClide has an IC50 of 11.2±2.2, 12.6±5.3, and 13.2±3.2 nM, respectively, which inhibits the development of Plasmodium falciparum strains 3D7c, HB3c, and K1d in vitro. In mice, GSK369796 dihydrochloride (chemical 4) exhibited stronger protein binding (93% vs.74%) than desethylamodiaquine, although human protein binding (88% vs.86%) was comparable. GSK369796 DiHClide has an IC50 of 7.5±0.8 μM and can also prevent hERG potassium channel repolarization[1].
ln Vivo
Plasmodium berghei ANKA is inhibited in vivo by GSK369796 DiHClide, with ED50 and ED90 values of 2.8 and 4.7 mg/kg, respectively [1].
References
[1]. O'Neill PM, et al. Candidate selection and preclinical evaluation of N-tert-butyl isoquine (GSK369796), an affordable and effective 4-aminoquinoline antimalarial for the 21st century. J Med Chem. 2009 Mar 12;52(5):1408-15
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C20H24CL3N3O
Molecular Weight
428.7831
CAS #
1010411-21-8
Related CAS #
459133-38-1;1010411-21-8 (HCl);
SMILES
OC1=CC(NC2=CC=NC3=CC(Cl)=CC=C23)=CC=C1CNC(C)(C)C.[H]Cl.[H]Cl
InChi Key
UDVALKJFXQVZSI-UHFFFAOYSA-N
InChi Code
InChI=1S/C20H22ClN3O.2ClH/c1-20(2,3)23-12-13-4-6-15(11-19(13)25)24-17-8-9-22-18-10-14(21)5-7-16(17)18;;/h4-11,23,25H,12H2,1-3H3,(H,22,24);2*1H
Chemical Name
2-[(tert-Butylamino)methyl]-5-[(7-chloroquinolin-4-yl)amino]phenol Dihydrochloride
Synonyms
GSK369796 dihydrochloride; GSK 369796; GSK-369796; GSK369796; N-tert-Butyl isoquine.
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~233.22 mM)
H2O : ~50 mg/mL (~116.61 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (5.83 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (5.83 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.3322 mL 11.6610 mL 23.3220 mL
5 mM 0.4664 mL 2.3322 mL 4.6644 mL
10 mM 0.2332 mL 1.1661 mL 2.3322 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top