GLPG0187

Alias: GLPG0187 GLPG 0187 GLPG-0187
Cat No.:V21632 Purity: ≥98%
GLPG0187 (GLPG-0187) is a novel, potent, broad spectrum and small molecule integrin receptor antagonist (IRA) with potential anticancer activity, inhibiting αvβ1-integrin with an IC50 of 1.3 nM.
GLPG0187 Chemical Structure CAS No.: 1320346-97-1
Product category: Integrin
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

GLPG0187 (GLPG-0187) is a novel, potent, broad spectrum and small molecule integrin receptor antagonist (IRA) with potential anticancer activity, inhibiting αvβ1-integrin with an IC50 of 1.3 nM. It inhibits osteoclastic bone resorption and angiogenesis.GLPG0187 binds to and blocks the activity of 5 RGD-integrin receptor subtypes, including alphavbeta1, alphavbeta3, alphavbeta5, alphavbeta6 and alpha5beta1. This may result in the inhibition of endothelial cell-cell interactions and endothelial cell-matrix interactions, and the prevention of angiogenesis and metastasis in tumor cells expressing these integrin receptors. Integrin receptors are transmembrane glycoproteins expressed on the surface of tumor vessel endothelial cells and some types of cancer cells, and play a crucial role in endothelial cell adhesion and migration.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
GLPG0187 exhibits selectivity for multiple RGD integrin receptors in solid-phase analysis, as demonstrated by its IC50 values of 1.3, 3.7, 2.0, 1.4, 1.2, 7.7 nM 1, αvβ3, αvβ5, αvβ6, αvβ8, and α5β1, in that order. A powerful model of osteoclastic bone resorption and angiogenesis is GLPG0187. A more epithelial, sessile phenotype is adopted by cells treated with GLPG0187 at doses that increase the E-calcin adhesion/morphogenic protein component. Mold acetaldehyde dehydrogenase shrinks in size in a dose-dependent way when exposed to GLPG0187 [1]. Cells under GLPG0187 treatment clumped and rounded. A notable dose-dependent decrease in tumor cell migration was shown by GLPG0187. All GLPG0187 concentrations considerably decreased cell swelling [2].
ln Vivo
The growth of the metastatic tumor was greatly inhibited when GLPG0187 blocked αv-integrin. Both the burden of bone tumors and the quantity of bone metastases/mouse were markedly lowered. During treatment, there was a considerable inhibition of both the growth of existing bone metastases and the creation of new ones [1].
References
[1]. van der Horst G, et al. Targeting of α(v)-integrins in stem/progenitor cells and supportive microenvironment impairs bone metastasis in human prostate cancer. Neoplasia. 2011 Jun;13(6):516-25.
[2]. Reeves KJ, et al. Prostate cancer cells home to bone using a novel in vivo model: modulation by the integrin antagonist GLPG0187. Int J Cancer. 2015 Apr 1;136(7):1731-40.
[3]. Puzhong Lu, et al. Chemical screening identifies ROCK1 as a regulator of migrasome formation. Cell Discov. 2020 Aug 4;6(1):51
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C29H37N7O5S
Molecular Weight
595.7130
CAS #
1320346-97-1
SMILES
O=C(O)[C@H](CNC1=NC(C)=NC(N2CCC(C3=NC4=C(CCCN4)C=C3)CC2)=C1C)NS(=O)(C5=CC=C(OC)C=C5)=O
InChi Key
CXHCNOMGODVIKB-VWLOTQADSA-N
InChi Code
InChI=1S/C29H37N7O5S/c1-18-26(31-17-25(29(37)38)35-42(39,40)23-9-7-22(41-3)8-10-23)32-19(2)33-28(18)36-15-12-20(13-16-36)24-11-6-21-5-4-14-30-27(21)34-24/h6-11,20,25,35H,4-5,12-17H2,1-3H3,(H,30,34)(H,37,38)(H,31,32,33)/t25-/m0/s1
Chemical Name
(S)-3-((2,5-dimethyl-6-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)piperidin-1-yl)pyrimidin-4-yl)amino)-2-((4-methoxyphenyl)sulfonamido)propanoic acid.
Synonyms
GLPG0187 GLPG 0187 GLPG-0187
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~12.5 mg/mL (~20.98 mM)
H2O : < 0.1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 1.25 mg/mL (2.10 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 12.5 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 1.25 mg/mL (2.10 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 12.5 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

View More

Solubility in Formulation 3: ≥ 0.89 mg/mL (1.49 mM) in 5% DMSO + 40% PEG300 + 5% Tween80 + 50% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.


Solubility in Formulation 4: ≥ 0.89 mg/mL (1.49 mM) (saturation unknown) in 5% DMSO + 95% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 5: 10 mg/mL (16.79 mM) in 20% HP-β-CD in Saline (add these co-solvents sequentially from left to right, and one by one), Suspension solution; with ultrasonication.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.6787 mL 8.3933 mL 16.7867 mL
5 mM 0.3357 mL 1.6787 mL 3.3573 mL
10 mM 0.1679 mL 0.8393 mL 1.6787 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top