yingweiwo

FT 011

Alias: FT-011; asengeprast; SHP-627; FT-011; FT-11; C6V7ZU2NPR; Benzoic acid, 2-[[(2E)-3-[3-methoxy-4-(2-propyn-1-yloxy)phenyl]-1-oxo-2-propen-1-yl]amino]-; FT 011;FT011
Cat No.:V2835 Purity: ≥98%
FT011 is a novel potent anti-inflammatory and anti-fibrotic agent that has been reported to attenuate organ damage in diabetic rats with cardiomyopathy and nephropathy.
FT 011
FT 011 Chemical Structure CAS No.: 1001288-58-9
Product category: MMP
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

FT011 is a novel potent anti-inflammatory and anti-fibrotic agent that has been reported to attenuate organ damage in diabetic rats with cardiomyopathy and nephropathy. n diabetic rats, FT011 reduced retinal leukostasis, microglial density and mRNA levels of intercellular adhesion molecule-1 (ICAM-1). In Müller cells, FT011 reduced diabetes-induced gliosis and vascular endothelial growth factor (VEGF) immunolabeling and the hyperglycaemic-induced increase in ICAM-1, monocyte chemoattractant protein-1, CCL20, cytokine-induced neutrophil chemoattractant-1, VEGF and IL-6. Late intervention with FT011 reduced acellular capillaries and the elevated mRNA levels of collagen IV and fibronectin in diabetic rats. In conclusion, the protective effects of FT011 in cardiorenal disease extend to key elements of diabetic retinopathy and highlight its potential as a treatment approach.

Biological Activity I Assay Protocols (From Reference)
Targets
Anti-fibrotic; ICAM-1
ln Vitro

In vitro activity: FT011 do not change glycogen synthase or glycogen phosphorylase enzyme activities but prevent both glycogenin mRNA synthesis and accumulation of Armanni-Ebstein lesions in the diabetic kidney.FT011 inhibit both TGF-β1 and PDGF-BB induced collagen production as well as PDGF-BB-mediated mesangial proliferation. FT011 reduced albuminuria, glomerulosclerosis and tubulointerstitial fibrosis


Kinase Assay: FT011 do not change glycogen synthase or glycogen phosphorylase enzyme activities but prevent both glycogenin mRNA synthesis and accumulation of Armanni-Ebstein lesions in the diabetic kidney. FT011 inhibit both TGF-β1 and PDGF-BB induced collagen production as well as PDGF-BB-mediated mesangial proliferation. FT011 reduced albuminuria, glomerulosclerosis and tubulointerstitial fibrosis.


Cell Assay: In Müller cells, FT011 reduced diabetes-induced gliosis and vascular endothelial growth factor (VEGF) immunolabeling and the hyperglycaemic-induced increase in ICAM-1, monocyte chemoattractant protein-1, CCL20, cytokine-induced neutrophil chemoattractant-1, VEGF and IL-6. Late intervention with FT011 reduced acellular capillaries and the elevated mRNA levels of collagen IV and fibronectin in diabetic rats. In conclusion, the protective effects of FT011 in cardiorenal disease extend to key elements of diabetic retinopathy and highlight its potential as a treatment approach.

ln Vivo
In rats with myocardial infarction, FT011 (100 mg/kg bid, po) improves cardiac function and myocardial remodeling[1].
Collagen synthesis in NCF was determined by (3)H-proline incorporation following stimulation with TGF-β or angiotensin II (Ang II). FT011 inhibited collagen synthesis to both agents in a dose dependent manner. In vivo, Sprague Dawley rats underwent left anterior descending coronary artery ligation or sham surgery and were randomized one week later to receive either FT011 (200mg/kg/day) or vehicle for a further 4 weeks. Echocardiography and cardiac catheterization were performed, and tissues were collected for histological analysis of collagen, myocyte hypertrophy, interstitial macrophage accumulation and Smad2 phosphorylation. mRNA expression of collagens I and III and TGF-β was measured using in situ hybridization and RT-PCR, respectively. FT011 treatment was associated with improved cardiac function (increased ejection fraction, fraction shortening and preload recruitable stroke work) and myocardial remodeling (reduced left ventricular diameter and volume at both end diastolic and systolic) compared with vehicle treatment. FT011 significantly reduced collagen matrix deposition, myocyte hypertrophy and interstitial macrophage infiltration, and mRNA expression of collagens I and III in NIZ compared with vehicle treatment.
Conclusion: Anti-fibrotic therapy with FT011 in MI rats attenuated fibrosis and preserved systolic function.[1]
Cell Assay
Measurement of collagen synthesis in rat neonatal cardiac fibroblasts (NCF)[1]
NCF were isolated from one to two day old pups with enzymatic digestion as described previously, and used at passage two. NCF collagen synthesis assays were performed as described previously. Briefly, NCF were pre-incubated for 2 h in the presence of FT011 (10–200 μM) or 0.1% DMSO (control group) in fresh DMEM/F12 before stimulation with 5 ng/ml of TGF-β or 100 nM of AngII in the presence of 1 μCi of 3H-proline/well and incubated for further 48 h before harvest. 3H-proline level was counted with 3 ml scintillation fluid on a β-counter to determine the level of 3H-proline incorporation. Experiments were performed in triplicate.
Animal Protocol
Animal/Disease Models: Seventy male Sprague Dawley (SD) rats (weighing 200-250 g)[1]
Doses: 100 mg/kg
Route of Administration: BID, po on day 7 after surgery, for 4 weeks
Experimental Results: Increased ejection fraction, fraction shortening and preload recruitable stroke work.
Myocardial infarction and study design[1]
Seventy male Sprague Dawley (SD) rats in total weighing 200–250 g were randomized to undergo left anterior descending coronary artery (LAD) ligation or sham surgery as described previously [18]. Briefly, animals were anesthetized with isoflurane, intubated and the thoracic cavity opened. The pericardial sac was torn open and a 6-0 prolene suture was used to ligate the LAD. Visible blanching and hypokinesis of the anterior wall of the left ventricle and swelling of the left atrium are indicative of successful ligation. Sham operations consisted of the same procedure except that the suture was passed through the myocardium beneath the LAD without ligation.
Echocardiography was performed on all animal groups 2 days post-MI surgery (base-line). On day 7 after surgery, sham and MI groups were randomized to receive either treatment with FT011 (100 mg/kg b.i.d. gavage) or vehicle (0.1% carboxy-methyl cellulose) for 4 weeks. We have previously examined the safety profile of FT011 within the dose range used in the present study. Cardiac function was assessed by echocardiography and cardiac catheterization prior to sacrificing at day 35 after surgery.
References

[1]. A new anti-fibrotic drug attenuates cardiac remodeling and systolic dysfunction following experimental myocardial infarction. Int J Cardiol. 2013 Sep 30;168(2):1174-85.

Additional Infomation
Pathological deposition of extracellular matrix in the non-infarct zone (NIZ) of the ventricle post myocardial infarction (MI) is a key contributor to cardiac remodeling and heart failure. FT011, a novel antifibrotic compound, was evaluated for its efficacy in neonatal cardiac fibroblasts (NCF) and in an experimental MI model.
In summary, our findings indicate that FT011 reduces collagen matrix accumulation and myocyte hypertrophy in the heart following MI, which is associated with a significant improvement in systolic function. While the precise mode of action for FT011 is not certain, these data confirm the therapeutic potential of FT011, specifically targeting fibrosis in the setting of MI and heart failure.[1]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C₂₀H₁₇NO₅
Molecular Weight
351.35
Exact Mass
351.11
Elemental Analysis
C, 68.37; H, 4.88; N, 3.99; O, 22.77
CAS #
1001288-58-9
Related CAS #
1001288-58-9
PubChem CID
23648966
Appearance
Light yellow to yellow solid powder
Density
1.3±0.1 g/cm3
Boiling Point
618.9±55.0 °C at 760 mmHg
Flash Point
328.1±31.5 °C
Vapour Pressure
0.0±1.9 mmHg at 25°C
Index of Refraction
1.656
LogP
4.39
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
7
Heavy Atom Count
26
Complexity
564
Defined Atom Stereocenter Count
0
SMILES
O(CC#C)C1=CC=C(/C=C/C(NC2C=CC=CC=2C(=O)O)=O)C=C1OC
InChi Key
UIWZIDIJCUEOMT-PKNBQFBNSA-N
InChi Code
InChI=1S/C20H17NO5/c1-3-12-26-17-10-8-14(13-18(17)25-2)9-11-19(22)21-16-7-5-4-6-15(16)20(23)24/h1,4-11,13H,12H2,2H3,(H,21,22)(H,23,24)/b11-9+
Chemical Name
2-[[(E)-3-(3-methoxy-4-prop-2-ynoxyphenyl)prop-2-enoyl]amino]benzoic acid
Synonyms
FT-011; asengeprast; SHP-627; FT-011; FT-11; C6V7ZU2NPR; Benzoic acid, 2-[[(2E)-3-[3-methoxy-4-(2-propyn-1-yloxy)phenyl]-1-oxo-2-propen-1-yl]amino]-; FT 011;FT011
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO:≥ 29 mg/mL
Water:<1 mg/mL
Ethanol:<1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: 2.5 mg/mL (7.12 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (7.12 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.8462 mL 14.2308 mL 28.4616 mL
5 mM 0.5692 mL 2.8462 mL 5.6923 mL
10 mM 0.2846 mL 1.4231 mL 2.8462 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
Effects of FT011 in Systemic Sclerosis
CTID: NCT04647890
Phase: Phase 2
Status: Completed
Date: 2023-12-20
A phase II, randomised, double blind, placebo-controlled study of the pharmacokinetics, pharmacodynamic effects, and safety, of
EudraCT: 2020-005116-21
Phase: Phase 2
Status: Ongoing, Completed
Date: 2021-09-27
Biological Data

  • FT 011

    FT011M reduced retinal leukostasis and ICAM-1 mRNA levels in Ren-2 rats diabetic for 8 weeks.2015 Jul 29;10(7):e0134392

  • FT 011

    FT011M reduced Iba1-immunolabeled microglia in the retina of Ren-2 rats diabetic for 8 weeks2015 Jul 29;10(7):e0134392

  • FT 011

    FT011M reduced VEGF immunolabeling in retina of Ren-2 rats diabetic for 8 weeks.2015 Jul 29;10(7):e0134392
Contact Us