yingweiwo

Etomoxir

Alias: (R)-(+)-Etomoxir B 807-54 B80754 B-80754B807-54 B-807-54 B 80754
Cat No.:V9766 Purity: ≥98%
Etomoxir is a novel, potent and irreversible (covalent)inhibitor of carnitine palmitoyltransferase-1 (CPT-1) on the outer face of the inner mitochondrial membrane.
Etomoxir
Etomoxir Chemical Structure CAS No.: 124083-20-1
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
50mg
100mg
250mg
Other Sizes

Other Forms of Etomoxir:

  • Etomoxir Sodium salt
  • Etomoxir sodium (racemate)
  • S-(+)-Etomoxir
  • R-(+)-Etomoxir Potassium
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Etomoxir is a novel, potent and irreversible (covalent) inhibitor of carnitine palmitoyltransferase-1 (CPT-1) on the outer face of the inner mitochondrial membrane. It inhibits β-oxidation in mitochondria; shown to inhibit cardiolipin biosynthesis from exogenous fatty acid in H9c2 cells. Etomoxir has also been identified as a direct agonist of PPARα. Etomoxir is a compound that binds irreversibly to the catalytic site of CPT-1 inhibiting its activity, but also upregulates fatty acid oxidation enzymes.

Biological Activity I Assay Protocols (From Reference)
Targets
Carnitine palmitoyltransferase I (CPT-I)
ln Vitro
When etomoxir binds irreversibly to CPT-1's catalytic site, it inhibits CPT-1's activity while simultaneously increasing transplantation oxidase. Etomoxir was created as a probe for the outer mitochondrial membrane-localized mitochondrial carnitine scaffold amplification enzyme-1 (CPT-1). Etomoxir stimulates DNA synthesis and myocardial development in the myocardium by acting as an oxisome proliferator. Consequently, etomoxan is regarded as a PPARalpha agonist in addition to a CPT1 [1]. Etomoxir has been proposed as a target for activation of cardiac mutations. It is a member of the ethylene oxide kinase carnitine template transferase I family. Carnitine template transferase I activity is irreversibly transcribed upon activation of Etomoxir therapy. Consequently, there is a decrease in base import as mitochondria and beta-oxidation, leading to an increase in cytoplasmic accumulation and oxidation. Etomoxir's long delays (24 hours) have even distinct impacts on the expression of enzymes [2].
ln Vivo
Etomoxir is a transcription factor that is involved in free equilibrium (FFA) oxidation and is linked to the important enzyme CPT1. Further supporting the direct response of P53 and Bax, as well as the role of FAO-mediated catalytic ROS production in the db/db model, is the fact that P53 directly responds to Bax, and Bax is blocked by etomoxir [3]. At a dose of 20 mg/kg body weight, etomoxir was injected once daily for eight days, resulting in a 44% reduction in specific CPT-I activity. The catalyst CPT-I activity was 44% lower in the catalyst treated with etomoxir. Lewis's blood glucose levels remained unchanged after 8 days of treatment with 20 mg/kg Etomoxir, in line with previous Etomoxir feeding trials. Similarly, etomoxir feeding had no effect on harvest mass in the hindlimb or on general growth traits like weight gain. However, in those treated with etomoxir, both liver and heart mass grew significantly by 11% [4].
Etomoxir suppresses the reduction of BMSCs-differentiated osteoblasts and significantly inhibits the decrease of bone mineral density (BMD) and bone breaking strength in mice fed high fat (HF) and db/db diets[3]. In mice fed HF and db/db, etopoxir inhibits the increase in mitochondrial ROS generation in osteoblasts and mice[3]. The in vivo partial inhibition of carnitine palmitoyltransferase-I (CPT-I) caused by etomoxir does not change the rates of cardiac long-chain fatty acid uptake and oxidation[4].
This study evaluated the association between free fatty acid (FFA), ROS generation, mitochondrial dysfunction and bone mineral density (BMD) in type 2 diabetic patients and investigated the molecular mechanism. db/db and high fat (HF)-fed mice were treated by Etomoxir, an inhibitor of CPT1, MitoQ, and PFT-α, an inhibitor of P53. Bone metabolic factors were assessed and BMSCs were isolated and induced to osteogenic differentiation. FFA, lipid peroxidation and mtDNA copy number were correlated with BMD in T2DM patients. Etomoxir, MitoQ and PFT-α significantly inhibited the decrease of BMD and bone breaking strength in db/db and HF-fed mice and suppressed the reduction of BMSCs-differentiated osteoblasts. Etomoxir and MitoQ, but not PFT-α, inhibited the increase of mitochondrial ROS generation in db/db and HF-fed mice and osteoblasts. In addition, Etomoxir, MitoQ and PFT-α significantly inhibited mitochondrial dysfunction in osteoblasts. Moreover, mitochondrial apoptosis was activated in osteoblasts derived from db/db and HF-fed mice, which was inhibited by Etomoxir, MitoQ and PFT-α. Furthermore, mitochondrial accumulation of P53 recruited Bax and initiated molecular events of apoptotic events. These results demonstrated that fatty acid oxidation resulted in ROS generation, activating P53/Bax-mediated mitochondrial apoptosis, leading to reduction of osteogenic differentiation and bone loss in T2DM.[3]
Although CPT-I (carnitine palmitoyltransferase-I) is generally regarded to present a major rate-controlling site in mitochondrial beta-oxidation, it is incompletely understood whether CPT-I is rate-limiting in the overall LCFA (long-chain fatty acid) flux in the heart. Another important site of regulation of the LCFA flux in the heart is trans-sarcolemmal LCFA transport facilitated by CD36 and FABPpm (plasma membrane fatty acid-binding protein). Therefore, we explored to what extent a chronic pharmacological blockade of the LCFA flux at the level of mitochondrial entry of LCFA-CoA would affect sarcolemmal LCFA uptake. Rats were injected daily with saline or etomoxir, a specific CPT-I inhibitor, for 8 days at 20 mg/kg of body mass. Etomoxir-treated rats displayed a 44% reduced cardiac CPT-I activity. Sarcolemmal contents of CD36 and FABPpm, as well as the LCFA transport capacity, were not altered in the hearts of etomoxir-treated versus control rats. Furthermore, rates of LCFA uptake and oxidation, and glucose uptake by cardiac myocytes from etomoxir-treated rats were not different from control rats, neither under basal nor under acutely induced maximal metabolic demands. Finally, hearts from etomoxir-treated rats did not display triacylglycerol accumulation. Therefore CPT-I appears not to present a major rate-controlling site in total cardiac LCFA flux. It is likely that sarcolemmal LCFA entry rather than mitochondrial LCFA-CoA entry is a promising target for normalizing LCFA flux in cardiac metabolic diseases[4].
Enzyme Assay
Biochemical measurement[3]
Blood samples were centrifuged at 3000 rpm for 10 minutes at 4 °C. Serum FFA was measured using an ELISA kit according to the manufacturer’s instructions. Serum triglyceride (TG), HDL and LDL were detected by commercial assay kits. Serum alkaline phosphatase (ALP), osteocalcin (OCN) and tartrate-resistant acid phosphatase (TRAP) were measured to assess osteogenic and osteoclastic activity using the Elisa assay kits.
Measurement of lipid peroxidation[3]
PBMCs were isolated and purified by isopycnic centrifugation using Histopaque-1119 and Histopaque-1077. Lipid peroxidation in PBMCs and differentiated osteoblasts were evaluated by the measurement of thiobarbituric acid-reactive substances (TBARS) levels using a commercial kit according to the manufacturer’s instructions.
Cell Assay
We examined the effect of etomoxir treatment on de novo cardiolipin (CL) biosynthesis in H9c2 cardiac myoblast cells. Etomoxir treatment did not affect the activities of the CL biosynthetic and remodeling enzymes but caused a reduction in [1-14C]palmitic acid or [1-14C]oleic acid incorporation into CL. The mechanism was a decrease in fatty acid flux through the de novo pathway of CL biosynthesis via a redirection of lipid synthesis toward 1,2-diacyl-sn-glycerol utilizing reactions mediated by a 35% increase (P < 0.05) in membrane phosphatidate phosphohydrolase activity. In contrast, etomoxir treatment increased [1,3-3H]glycerol incorporation into CL. The mechanism was a 33% increase (P < 0.05) in glycerol kinase activity, which produced an increased glycerol flux through the de novo pathway of CL biosynthesis. Etomoxir treatment inhibited 1,2-diacyl-sn-glycerol acyltransferase activity by 81% (P < 0.05), thereby channeling both glycerol and fatty acid away from 1,2,3-triacyl-sn-glycerol utilization toward phosphatidylcholine and phosphatidylethanolamine biosynthesis. In contrast, etomoxir inhibited myo-[3H]inositol incorporation into phosphatidylinositol and the mechanism was an inhibition in inositol uptake. Etomoxir did not affect [3H]serine uptake but resulted in an increased formation of phosphatidylethanolamine derived from phosphatidylserine. The results indicate that etomoxir treatment has diverse effects on de novo glycerolipid biosynthesis from various metabolic precursors. In addition, etomoxir mediates a distinct and differential metabolic channeling of glycerol and fatty acid precursors into CL[2].
Animal Protocol
Animal treatment[3]
All animal experiments were performed according to the procedures approved by Fourth Military Medical University Animal Care and Use Committee and were carried out in accordance with the approved guidelines. 80 male C57BLKS/J lar-Leprdb/db mice and 20 wild type littermates (8 week) were obtained from Model Animal Research Centre, Nanjing University, China. Mice were housed in cages in a limited access room, under temperature (23 ± 2 °C) and humidity (55 ± 5%) condition with a standard light (12 h light/dark) cycle and fed a regular diet. db/db mice were randomly divided into four groups: db/db group, Etomoxir group, MitoQ group, and PFT-α group. In the Etomoxir group, mice were intraperitoneally injected with 1 mg/kg Etomoxir twice every week. In the MitoQ group, 50 μmol/L MitoQ was given to the mice in water. Water bottles, containing either MitoQ, were covered with aluminum foil, and all bottles were refilled every 3 days. In the PFT-α group, mice were intraperitoneally injected with 1 mg/kg PFT-α twice every week. WT mice were administrated with vehicle instead. The experimental period is 8 weeks. At the end, peripheral blood samples and bone marrow cells were harvested for the assays.
100 C57BL/6 mice obtained from Experimental Animal Centre of Fourth Military Medical University. The mice were randomly divided into five groups: Control group, HF diet group, Etomoxir group, MitoQ group, and PFT-α group. Mice in HF diet, Etomoxir, MitoQ, and PFT-α groups were given high fat diet for 20 weeks and mice in Etomoxir, MitoQ, and PFT-α groups were administrated with Etomoxir, MitoQ, and PFT-α in the last 10 weeks. The administration of Etomoxir, MitoQ, and PFT-α were identical to the treatment in db/db mice. Control mice were administrated with vehicle instead.
Rats were injected daily with saline or etomoxir, a specific CPT-I inhibitor, for 8 days at 20 mg/kg of body mass. Etomoxir-treated rats displayed a 44% reduced cardiac CPT-I activity. Sarcolemmal contents of CD36 and FABPpm, as well as the LCFA transport capacity, were not altered in the hearts of etomoxir-treated versus control rats. Furthermore, rates of LCFA uptake and oxidation, and glucose uptake by cardiac myocytes from etomoxir-treated rats were not different from control rats, neither under basal nor under acutely induced maximal metabolic demands. Finally, hearts from etomoxir-treated rats did not display triacylglycerol accumulation. Therefore CPT-I appears not to present a major rate-controlling site in total cardiac LCFA flux. It is likely that sarcolemmal LCFA entry rather than mitochondrial LCFA-CoA entry is a promising target for normalizing LCFA flux in cardiac metabolic diseases.[4]
References

[1]. The use of partial fatty acid oxidation inhibitors for metabolic therapy of angina pectoris and heart failure. Herz. 2002 Nov;27(7):621-36.

[2]. Etomoxir mediates differential metabolic channeling of fatty acid and glycerol precursors into cardiolipin in H9c2 cells. J Lipid Res. 2003 Feb;44(2):415-23.

[3]. FFA-ROS-P53-mediated mitochondrial apoptosis contributes to reduction of osteoblastogenesis and bone mass in type 2 diabetes mellitus. Sci Rep. 2015 Jul 31;5:12724.

[4]. Etomoxir-induced partial carnitine palmitoyltransferase-I (CPT-I) inhibition in vivo does not alter cardiac long-chain fatty acid uptake and oxidation rates. Biochem J. 2009 Apr 15;419(2):447-55.

[5]. The CPT1a inhibitor, etomoxir induces severe oxidative stress at commonly used concentrations. Sci Rep. 2018 Apr 19;8(1):6289.

Additional Infomation
(2R)-2-[6-(4-chlorophenoxy)hexyl]-2-oxiranecarboxylic acid ethyl ester is an aromatic ether.
Partial fatty acid oxidation inhibitors have raised great interest since they are expected to counteract a dysregulated gene expression of hypertrophied cardiocytes. Some of these compounds have been developed for treating non-insulin-dependent diabetes mellitus and stable angina pectoris. A shift from fatty acid oxidation to glucose oxidation leads to a reduced gluconeogenesis and improved economy of cardiac work. An increased glucose oxidation can be achieved with the following enzyme inhibitors: etomoxir, oxfenicine, methyl palmoxirate, S-15176, metoprolol, amiodarone, perhexiline (carnitine palmitoyltransferase-1); aminocarnitine, perhexiline (carnitine palmitoyltransferase-2); hydrazonopropionic acid (carnitine-acylcarnitine translocase); MET-88 (gamma-butyrobetaine hydroxylase); 4-bromocrotonic acid, trimetazidine, possibly ranolazine (thiolases); hypoglycin (butyryl-CoA dehydrogenase); dichloroacetate (pyruvate dehydrogenase kinase). CLINICAL TRIALS with trimetazidine and ranolazine showed that this shift in substrate oxidation has an antianginal action. Etomoxir and MET-88 improved the function of overloaded hearts by increasing the density of the Ca(2+) pump of sarcoplasmic reticulum (SERCA2). The promoters of SERCA2 and alpha-myosin heavy-chain exhibit sequences which are expected to respond to transcription factors responsive to glucose metabolites and/or peroxisome proliferator-responsive element (PPAR) agonists. Further progress in elucidating novel compounds which upregulate SERCA2 expression is closely linked to the characterization of regulatory sequences of the SERCA2 promoter. [1]
We examined the effect of etomoxir treatment on de novo cardiolipin (CL) biosynthesis in H9c2 cardiac myoblast cells. Etomoxir treatment did not affect the activities of the CL biosynthetic and remodeling enzymes but caused a reduction in [1-14C]palmitic acid or [1-14C]oleic acid incorporation into CL. The mechanism was a decrease in fatty acid flux through the de novo pathway of CL biosynthesis via a redirection of lipid synthesis toward 1,2-diacyl-sn-glycerol utilizing reactions mediated by a 35% increase (P < 0.05) in membrane phosphatidate phosphohydrolase activity. In contrast, etomoxir treatment increased [1,3-3H]glycerol incorporation into CL. The mechanism was a 33% increase (P < 0.05) in glycerol kinase activity, which produced an increased glycerol flux through the de novo pathway of CL biosynthesis. Etomoxir treatment inhibited 1,2-diacyl-sn-glycerol acyltransferase activity by 81% (P < 0.05), thereby channeling both glycerol and fatty acid away from 1,2,3-triacyl-sn-glycerol utilization toward phosphatidylcholine and phosphatidylethanolamine biosynthesis. In contrast, etomoxir inhibited myo-[3H]inositol incorporation into phosphatidylinositol and the mechanism was an inhibition in inositol uptake. Etomoxir did not affect [3H]serine uptake but resulted in an increased formation of phosphatidylethanolamine derived from phosphatidylserine. The results indicate that etomoxir treatment has diverse effects on de novo glycerolipid biosynthesis from various metabolic precursors. In addition, etomoxir mediates a distinct and differential metabolic channeling of glycerol and fatty acid precursors into CL. [2]
This study evaluated the association between free fatty acid (FFA), ROS generation, mitochondrial dysfunction and bone mineral density (BMD) in type 2 diabetic patients and investigated the molecular mechanism. db/db and high fat (HF)-fed mice were treated by Etomoxir, an inhibitor of CPT1, MitoQ, and PFT-α, an inhibitor of P53. Bone metabolic factors were assessed and BMSCs were isolated and induced to osteogenic differentiation. FFA, lipid peroxidation and mtDNA copy number were correlated with BMD in T2DM patients. Etomoxir, MitoQ and PFT-α significantly inhibited the decrease of BMD and bone breaking strength in db/db and HF-fed mice and suppressed the reduction of BMSCs-differentiated osteoblasts. Etomoxir and MitoQ, but not PFT-α, inhibited the increase of mitochondrial ROS generation in db/db and HF-fed mice and osteoblasts. In addition, Etomoxir, MitoQ and PFT-α significantly inhibited mitochondrial dysfunction in osteoblasts. Moreover, mitochondrial apoptosis was activated in osteoblasts derived from db/db and HF-fed mice, which was inhibited by Etomoxir, MitoQ and PFT-α. Furthermore, mitochondrial accumulation of P53 recruited Bax and initiated molecular events of apoptotic events. These results demonstrated that fatty acid oxidation resulted in ROS generation, activating P53/Bax-mediated mitochondrial apoptosis, leading to reduction of osteogenic differentiation and bone loss in T2DM. [3]
Although CPT-I (carnitine palmitoyltransferase-I) is generally regarded to present a major rate-controlling site in mitochondrial beta-oxidation, it is incompletely understood whether CPT-I is rate-limiting in the overall LCFA (long-chain fatty acid) flux in the heart. Another important site of regulation of the LCFA flux in the heart is trans-sarcolemmal LCFA transport facilitated by CD36 and FABPpm (plasma membrane fatty acid-binding protein). Therefore, we explored to what extent a chronic pharmacological blockade of the LCFA flux at the level of mitochondrial entry of LCFA-CoA would affect sarcolemmal LCFA uptake. Rats were injected daily with saline or etomoxir, a specific CPT-I inhibitor, for 8 days at 20 mg/kg of body mass. Etomoxir-treated rats displayed a 44% reduced cardiac CPT-I activity. Sarcolemmal contents of CD36 and FABPpm, as well as the LCFA transport capacity, were not altered in the hearts of etomoxir-treated versus control rats. Furthermore, rates of LCFA uptake and oxidation, and glucose uptake by cardiac myocytes from etomoxir-treated rats were not different from control rats, neither under basal nor under acutely induced maximal metabolic demands. Finally, hearts from etomoxir-treated rats did not display triacylglycerol accumulation. Therefore CPT-I appears not to present a major rate-controlling site in total cardiac LCFA flux. It is likely that sarcolemmal LCFA entry rather than mitochondrial LCFA-CoA entry is a promising target for normalizing LCFA flux in cardiac metabolic diseases. [4]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C17H23CLO4
Molecular Weight
326.82
Exact Mass
326.128
Elemental Analysis
C, 62.48; H, 7.09; Cl, 10.85; O, 19.58
CAS #
124083-20-1
Related CAS #
Etomoxir sodium salt;828934-41-4; 82258-36-4 (racemate) 124083-20-1 (free acid); 828934-40-3 (S-isomer); 132308-39-5 (potassium salt)
PubChem CID
9840324
Appearance
Colorless to light yellow solid (<32°C),or liquid (>34°C)
Density
1.2±0.1 g/cm3
Boiling Point
405.0±25.0 °C at 760 mmHg
Flash Point
142.6±22.2 °C
Vapour Pressure
0.0±0.9 mmHg at 25°C
Index of Refraction
1.520
LogP
4.46
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
11
Heavy Atom Count
22
Complexity
342
Defined Atom Stereocenter Count
1
SMILES
O=C(OCC)[C@@]1(OC1)CCCCCCOC2=CC=C(C=C2)Cl
InChi Key
DZLOHEOHWICNIL-QGZVFWFLSA-N
InChi Code
InChI=1S/C17H23ClO4/c1-2-20-16(19)17(13-22-17)11-5-3-4-6-12-21-15-9-7-14(18)8-10-15/h7-10H,2-6,11-13H2,1H3/t17-/m1/s1
Chemical Name
Ethyl (2R)-2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate
Synonyms
(R)-(+)-Etomoxir B 807-54 B80754 B-80754B807-54 B-807-54 B 80754
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: (1). This product requires protection from light (avoid light exposure) during transportation and storage.  (2). Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~305.98 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 3.5 mg/mL (10.71 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 35.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 2: ≥ 3.5 mg/mL (10.71 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 35.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

View More

Solubility in Formulation 3: 2.5 mg/mL (7.65 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.


Solubility in Formulation 4: 10 mg/mL (30.60 mM) in 0.5% Methylcellulose/saline water (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.0598 mL 15.2989 mL 30.5979 mL
5 mM 0.6120 mL 3.0598 mL 6.1196 mL
10 mM 0.3060 mL 1.5299 mL 3.0598 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT03144128 COMPLETED Dietary Supplement: Vitamin D
Dietary Supplement: Placebo
Cancer Cachexia
Vitamin D Deficiency
David Travis Thomas 2018-05-23 Not Applicable
Biological Data
  • Alterations of bone mass in mice and osteogenic differentiation of BMSCs in vitro. db/db mice were administered with Etomoxir, an inhibitor of CPT1, MitoQ, a mitochondrial specific antioxidant, and PFT-α, an inhibitor of P53, for 8 weeks. After that, bone mass density of total tibia (A), tibial proximal metaphysic (B) and tibial diaphysis (C), and breaking strength (D) were measured. BMSCs were isolated and induced to differentiate into osteoblast. Then, osteogenic differentiation was evaluated by alkaline phosphatase staining (E). Protein expression of Runx2, OCN and OPN in differentiated osteoblasts was detected by western blot (F). BMSCs isolated from C57BL/6 mice were induced to differentiate into osteoblast in the presence or absence of 250 μM palmitate with or without 10 μM Etomoxir, 100 nM MitoQ, 10 μM PFT-α. Then, osteogenic differentiation was evaluated by alizarin red staining (G). *p < 0.05, compared with WT. #p < 0.05, compared with db/db mice.[3]. Li J, et al. FFA-ROS-P53-mediated mitochondrial apoptosis contributes to reduction of osteoblastogenesis and bone mass in type 2 diabetes mellitus. Sci Rep. 2015 Jul 31;5:12724.
  • Alterations of oxidative stress-related markers in urine and PBMCs in mice and in differentiated osteoblast in vitro. db/db mice were administered with Etomoxir, an inhibitor of CPT1, MitoQ, a mitochondrial specific antioxidant, and PFT-α, an inhibitor of P53, for 8 weeks. After that, 8OH-dG (A) in urine and lipid peroxidation (B) in PBMCs were determined by commercial kits. Then, osteogenic differentiation of BMSCs was induced and intracellular ROS level was examined by DCFH-DA (C). Mitochondrial superoxide anion in differentiated osteoblasts was determined by staining of MitoSOX (D), a mitochondrial superoxide anion specific probe. *p < 0.05, compared with WT. #p < 0.05, compared with db/db mice.[3]. Li J, et al. FFA-ROS-P53-mediated mitochondrial apoptosis contributes to reduction of osteoblastogenesis and bone mass in type 2 diabetes mellitus. Sci Rep. 2015 Jul 31;5:12724.
  • Alterations of mitochondrial function in differentiated osteoblasts in vitro. db/db mice were administered with Etomoxir, an inhibitor of CPT1, MitoQ, a mitochondrial specific antioxidant, and PFT-α, an inhibitor of P53, for 8 weeks. After that, osteogenic differentiation of BMSCs was induced in vitro. Oxygen consumption rate was evaluated by a Clark Clark Oxygen Electrode (A). mtDNA copy number was detected by Real-time PCR (B). Mitochondrial membrane potential was measured by Rho123 (C). *p < 0.05, compared with WT. #p < 0.05, compared with db/db mice.[3]. Li J, et al. FFA-ROS-P53-mediated mitochondrial apoptosis contributes to reduction of osteoblastogenesis and bone mass in type 2 diabetes mellitus. Sci Rep. 2015 Jul 31;5:12724.
Contact Us