Efaproxiral (RSR13)

Alias: RSR13 RSR-13 RSR 13 NSC-722758 NSC722758 NSC 722758 Efaproxyn
Cat No.:V20405 Purity: ≥98%
Efaproxiral (RSR13)is a synthetic allosteric modifier of hemoglobin (Hb) andabezafibrate analogused forbrain metastases originating from breast cancer.
Efaproxiral (RSR13) Chemical Structure CAS No.: 131179-95-8
Product category: Reactive Oxygen Species
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
25mg
50mg
100mg
250mg
500mg
1g
Other Sizes

Other Forms of Efaproxiral (RSR13):

  • Efaproxiral Sodium (RSR13)
  • Efaproxiral-d6 (Efaproxiral-d6)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Efaproxiral (RSR13) is a synthetic allosteric modifier of hemoglobin (Hb) and a bezafibrate analog used for brain metastases originating from breast cancer. Efaproxiral has been shown to bind reversibly to hemoglobin, stabilizing the deoxyhemoglobin tetramer conformation to reduce its affinity for oxygen. Efaproxiral plus oxygen breathing reduces the radiobiological hypoxic fraction of EMT6 tumors from the value of 24% found in both air-breathing and oxygen-breathing mice to 9% and improves the response of the tumors to radiation. It also has the potential to be used for the treatment of depression, traumatic brain injury, ischemia, stroke, myocardial infarction, diabetes, hypoxia, sickle cell disease, hypercholesterolemia and as a radio sensitiser.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
In the central water cavity of Hb, efaproxiral only binds to two symmetrically linked locations [2]. When serum albumin solution is present, epsilon easily passes through the red blood cell membrane [2]. In the presence of anion channel blockers (DIDS), efaproxiral entry into red blood cells is not impeded [2].
ln Vivo
Efaproxiral (150 mg/kg, intraperitoneal injection) can enhance tumor oxygenation and boost the inhibitory effect of radiation on tumor growth within 5 days of treatment [3]. Efaproxiral lowers hemoglobin-oxygen binding affinity, stimulates hemoglobin to release oxygen to adjacent tissues, and may increase tumor pO(2)[4]
Animal Protocol
Animal/Disease Models: Female C3H/HEJ mice (18-20 g), radiation-induced fibrosarcoma tumors ( RIF-1) cell xenograft [3]
Doses: 150 mg/kg
Route of Administration: intraperitoneal (ip) injection; prior to X-ray irradiation (4 Gy/day) for 5 days
Experimental Results: Significant increase in tumor oxygenation over 5 days 8.4 to 43.4 mmHg, with the greatest increase occurring 22-31 minutes after treatment.
References
[1]. Stea B, et al. Efaproxiral red blood cell concentration predicts efficacy in patients with brain metastases. Br J Cancer. 2006 Jun 19;94(12):1777-1784.
[2]. Abraham DJ, et al. Allosteric modifiers of hemoglobin: 2-[4-[[(3,5-disubstituted anilino)carbonyl]methyl]phenoxy]-2-methylpropionic acid derivatives that lower the oxygen affinity of hemoglobin in red cell suspensions, in whole blood, and in vivo in rats.
[3]. Hou H, et al. The effects of Efaproxyn (efaproxiral) on subcutaneous RIF-1 tumor oxygenation and enhancement of radiotherapy-mediated inhibition of tumor growth in mice. Radiat Res. 2007 Aug;168(2):218-25.
[4]. Hou H, et al. Increased oxygenation of intracranial tumors by efaproxyn (efaproxiral), an allosteric hemoglobin modifier: In vivo EPR oximetry study. Int J Radiat Oncol Biol Phys. 2005 Apr 1;61(5):1503-9.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C20H23NO4
Molecular Weight
341.4
Exact Mass
341.16271
CAS #
131179-95-8
Related CAS #
Efaproxiral sodium;170787-99-2;Efaproxiral-d6;1246815-16-6
SMILES
CC(C)(OC1=CC=C(CC(NC2=CC(C)=CC(C)=C2)=O)C=C1)C(O)=O
InChi Key
BNFRJXLZYUTIII-UHFFFAOYSA-N
InChi Code
InChI=1S/C20H23NO4/c1-13-9-14(2)11-16(10-13)21-18(22)12-15-5-7-17(8-6-15)25-20(3,4)19(23)24/h5-11H,12H2,1-4H3,(H,21,22)(H,23,24)
Chemical Name
2-[4-[2-[(3,5-dimethylphenyl)amino]-2-oxoethyl]phenoxy]-2-methylpropanoic acid.
Synonyms
RSR13 RSR-13 RSR 13 NSC-722758 NSC722758 NSC 722758 Efaproxyn
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ≥ 150 mg/mL (~439.37 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (6.09 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (6.09 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (6.09 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 27.5 mg/mL (80.55 mM) in 50% PEG300 50% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.9291 mL 14.6456 mL 29.2912 mL
5 mM 0.5858 mL 2.9291 mL 5.8582 mL
10 mM 0.2929 mL 1.4646 mL 2.9291 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top