Size | Price | Stock | Qty |
---|---|---|---|
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
Purity: ≥98%
Dofetilide (formerly UK-68789; UK68789; Dofetilidum; Tikosyn) is a potent and selective potassium channel (hERG) blocker approved for use as a Class III antiarrhythmic drug.
ln Vitro |
|
|
---|---|---|
ln Vivo |
Dofetilide (3~100 μg/kg; iv) selectively lengthens the activation-repolarization delay while maintaining an unchanged activation time, which lengthens the repolarization time [2]. The kidneys discharge a variety of inactive polar metabolites that are produced when CYP3A4 metabolizes dofetilide [1].
|
|
Animal Protocol |
Animal/Disease Models: Adult beagle dogs (13-15 kg)[2]
Doses: 3~100 μg/kg Route of Administration: Iv Experimental Results: Increased repolarisation time via a selective prolongation of activation repolarisation interval, activation time being unchanged. |
|
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
>90% 3 L/kg Approximately 80% of a single dose of dofetilide is excreted in urine, of which approximately 80% is excreted as unchanged dofetilide with the remaining 20% consisting of inactive or minimally active metabolites. Renal elimination involves both glomerular filtration and active tubular secretion (via the cation transport system, a process that can be inhibited by cimetidine, trimethoprim, prochlorperazine, megestrol and ketoconazole). ... The oral bioavailability of dofetilide is >90%, with maximal plasma concentrations occurring at about 2-3 hours in the fasted state. Oral bioavailability is unaffected by food or antacid. The terminal half life of Tikosyn is approximately 10 hours; steady state plasma concentrations are attained within 2-3 days, with an accumulation index of 1.5 to 2.0. Plasma concentrations are dose proportional. Plasma protein binding of dofetilide is 60-70%, is independent of plasma concentration, and is unaffected by renal impairment. Volume of distribution is 3 L/kg. 1. Pharmacokinetics of dofetilide were studied in man, dog, rat and mouse after single IV and oral doses of dofetilide or (14)C-dofetilide. 2. Dofetilide was absorbed completely in all species. Low metabolic clearance in man resulted in complete bioavailability following oral administration. Higher metabolic clearance in rodents, and to a lesser extent dogs, resulted in decreased bioavailability because of first-pass metabolism. 3. Following IV administration, the volume of distribution showed only moderate variation in all species (2.8-6.3 l/kg). High plasma clearance in rodents resulted in short half-life values (mouse 0.32, male rat 0.5 and female rat 1.2 hr), while lower clearance in dog and man gave longer terminal elimination half-lives (4.6 and 7.6 hr respectively). 4. After single IV doses of (14)C-dofetilide, unchanged drug was the major component excreted in urine of all species with several metabolites also present. 5. Metabolites identified in urine from all species were formed by N-oxidation or N-dealkylation of the tertiary nitrogen atom of dofetilide. 6. After oral and IV administration of (14)C-dofetilide to man, parent compound was the only detectable component present in plasma and represented 75% of plasma radioactivity. No single metabolite accounted for greater than 5% of plasma radioactivity. Metabolism / Metabolites Hepatic Dofetilide, a class III antidysrhythmic agent, undergoes both renal and metabolic clearance. Characterization of the metabolism in vitro allows explanation of species differences, whereas identification of the human enzymes involved permits assessment of potential drug interaction. In liver microsomes, the rate of oxidative metabolism of dofetilide is in the order: male rat > female rat > dog > humans, which correlates with the metabolic clearance seen in vivo. In vitro products of oxidative metabolism, formed by N-dealkylation, are the same as those formed in vivo, with the N-desmethyl being the major product. This route of dofetilide metabolism is mediated by cytochrome P450 (CYP). In humans, N-demethylation has a high KM of 657 +/- 116 uM, indicating low affinity for the enzyme's active site. In a number of human liver microsomal preparations, this rate correlated (r = 0.903) with the activity of CYP3A4. There was no correlation with the activities of other isozymes. Specific isozyme inhibitors also indicated the involvement of CYP3A4, with partial inhibition being observed with ketoconazole and troleandeomycin, whereas the activator, alpha-naphthaflavone, caused increased turnover. No inhibition was observed with specific inhibitors or competing substrates for other isozymes. Dofetilide did not significantly inhibit CYP2C9, CYP2D6, or CYP3A4 at concentrations up to 100 microM in vitro. In contrast, amiodarone (IC50, 25 uM) and flecainide (49 microM) inhibited CYP2C9 and quinidine (0.26 uM), and flecainide (0.44 uM) inhibited CYP2D6. Many antidysrhythmic drugs have active, circulating metabolites, complicating the relationship of dose and clinical response. In vitro pharmacology studies allow assessment of the potential contribution to the pharmacological profile by metabolites. Potency of dofetilide and metabolites has been compared for class III (K+ channel blockade) and class I (Na+ channel blockade) antidysrhythmic activities. Three of the metabolites of dofetilide displayed class III activity but at concentrations at least 20-fold higher than dofetilide. Dofetilide N-oxide showed class I activity, but only at high concentration. Neither resting membrane potential or action potential amplitude were affected by any metabolite. This lack of biologically relevant activity is in accord with the close correlation between plasma concentrations of dofetilide and pharmacological response. Approximately 80% of a single dose of dofetilide is excreted in urine, of which approximately 80% is excreted as unchanged dofetilide with the remaining 20% consisting of inactive or minimally active metabolites. ... In vitro studies with human liver microsomes show that dofetilide can be metabolized by CYP3A4, but it has a low affinity for this isoenzyme. Metabolites are formed by N-dealkylation and N-oxidation. There are no quantifiable metabolites circulating in plasma, but 5 metabolites have been identified in urine Biological Half-Life 10 hours Following IV administration, ... high plasma clearance in rodents resulted in short half-life values (mouse 0.32, male rat 0.5 and female rat 1.2 hr), while lower clearance in dog and man gave longer terminal elimination half-lives (4.6 and 7.6 hr respectively). ... The terminal half life of Tikosyn is approximately 10 hours |
|
Toxicity/Toxicokinetics |
Hepatotoxicity
In clinical trials, serum aminotransferase and alkaline phosphatase elevations were no more common during dofetilide than placebo therapy. Some degree of ALT elevation was reported in 15% of dofetilide but a similar proportion of placebo recipients; these elevations were above 3 times the upper limit of normal in 1.5% vs 2.0%. Thus, the background rate of serum ALT elevations in patients with atrial fibrillation eligible for dofetilide treatment appears to be high. Despite this, dofetilide has not been linked to instances of clinically apparent liver injury with symptoms or jaundice. The product label for dofetilide does not mention hepatotoxicity and does not specifically recommend monitoring of liver tests. Likelihood score: E (unlikely cause of clinically apparent liver injury). Protein Binding 60% -70% Interactions Concomitant use of verapamil is contraindicated. Co-administration of Tikosyn with verapamil resulted in increases in dofetilide peak plasma levels of 42%, although overall exposure to dofetilide was not significantly increased. In an analysis of the supraventricular arrhythmia and The Danish Investigations of Arrhythmia and Mortality on Dofetilide (DIAMOND) patient populations, the concomitant administration of verapamil with dofetilide was associated with a higher occurrence of torsade de pointes. Concomitant use of cimetidine is contraindicated. Cimetidine at 400 mg BID (the usual prescription dose) co-administered with Tikosyn (500 mcg BID) for 7 days has been shown to increase dofetilide plasma levels by 58%. Cimetidine at doses of 100 mg BID (OTC dose) resulted in a 13% increase in dofetilide plasma levels (500 mcg single dose). No studies have been conducted at intermediate doses of cimetidine. If a patient requires Tikosyn and anti-ulcer therapy, it is suggested that omeprazole, ranitidine, or antacids (aluminum and magnesium hydroxides) be used as alternatives to cimetidine, as these agents have no effect on the pharmacokinetic profile of Tikosyn. The use of Tikosyn in conjunction with other drugs that prolong the QT interval has not been studied and is not recommended. Such drugs include phenothiazines, cisapride, bepridil, tricyclic antidepressants, certain oral macrolides, and certain fluoroquinolones. Class I or Class III antiarrhythmic agents should be withheld for at least three half-lives prior to dosing with Tikosyn. In clinical trials, Tikosyn was administered to patients previously treated with oral amiodarone only if serum amiodarone levels were below 0.3 mg/L or amiodarone had been withdrawn for at least three months. Hypokalemia or hypomagnesemia may occur with administration of potassium-depleting diuretics, increasing the potential for torsade de pointes. Potassium levels should be within the normal range prior to administration of Tikosyn and maintained in the normal range during administration of Tikosyn. For more Interactions (Complete) data for Dofetilide (15 total), please visit the HSDB record page. |
|
References | ||
Additional Infomation |
Therapeutic Uses
Anti-Arrhythmia Agents, Potassium Channel Blockers Tikosyn is indicated for the conversion of atrial fibrillation and atrial flutter to normal sinus rhythm. /Included in US product label/ Tikosyn is indicated for the maintenance of normal sinus rhythm (delay in time to recurrence of atrial fibrillation/atrial flutter (AF/AFl)) in patients with atrial fibrillation/atrial flutter of greater than one week duration who have been converted to normal sinus rhythm. Because Tikosyn can cause life threatening ventricular arrhythmias, it should be reserved for patients in whom atrial fibrillation/atrial flutter is highly symptomatic. /Included in US product label/ Drug Warnings /BOXED WARNING/ To minimize the risk of induced arrhythmia, patients initiated or re-initiated on Tikosyn should be placed for a minimum of 3 days in a facility that can provide calculations of creatinine clearance, continuous electrocardiographic monitoring, and cardiac resuscitation ... . Tikosyn is available only to hospitals and prescribers who have received appropriate Tikosyn dosing and treatment initiation education; Tikosyn (dofetilide) can cause serious ventricular arrhythmias, primarily torsade de pointes (TdP) type ventricular tachycardia, a polymorphic ventricular tachycardia associated with QT interval prolongation. QT interval prolongation is directly related to dofetilide plasma concentration. Factors such as reduced creatinine clearance or certain dofetilide drug interactions will increase dofetilide plasma concentration. The risk of TdP can be reduced by controlling the plasma concentration through adjustment of the initial dofetilide dose according to creatinine clearance and by monitoring the ECG for excessive increases in the QT interval. Treatment with dofetilide must therefore be started only in patients placed for a minimum of three days in a facility that can provide electrocardiographic monitoring and in the presence of personnel trained in the management of serious ventricular arrhythmias. Calculation of the creatinine clearance for all patients must precede administration of the first dose of dofetilide. In patients with mild to moderate renal failure, decreases in dosage based on creatinine clearance are required to minimize the risk of torsades de pointes. The drug should not be used in patients with advanced renal failure or with inhibitors of renal cation transport. Torsades de pointes occurred in 1-3% of patients in clinical trials where strict exclusion criteria (e.g., hypokalemia) were applied and continuous ECG monitoring was used to detect marked QT prolongation in the hospital. The incidence of this adverse effect during more widespread use of the drug, marketed since 2000, is unknown. Other adverse effects were no more common than with placebo during premarketing clinical trials. For more Drug Warnings (Complete) data for Dofetilide (16 total), please visit the HSDB record page. Pharmacodynamics Dofetilide is an antiarrhythmic drug with Class III (cardiac action potential duration prolonging) properties and is indicated for the maintenance of normal sinus rhythm. Dofetilide increases the monophasic action potential duration in a predictable, concentration-dependent manner, primarily due to delayed repolarization. At concentrations covering several orders of magnitude, Dofetilide blocks only IKr with no relevant block of the other repolarizing potassium currents (e.g., IKs, IK1). At clinically relevant concentrations, Dofetilide has no effect on sodium channels (associated with Class I effect), adrenergic alpha-receptors, or adrenergic beta-receptors. |
Molecular Formula |
C19H27N3O5S2
|
|
---|---|---|
Molecular Weight |
441.56
|
|
Exact Mass |
441.139
|
|
CAS # |
115256-11-6
|
|
Related CAS # |
Dofetilide-d4;1189700-56-8
|
|
PubChem CID |
71329
|
|
Appearance |
White to off-white solid powder
|
|
Density |
1.3±0.1 g/cm3
|
|
Boiling Point |
614.1±65.0 °C at 760 mmHg
|
|
Melting Point |
147-1490C
|
|
Flash Point |
325.2±34.3 °C
|
|
Vapour Pressure |
0.0±1.8 mmHg at 25°C
|
|
Index of Refraction |
1.614
|
|
LogP |
1.56
|
|
Hydrogen Bond Donor Count |
2
|
|
Hydrogen Bond Acceptor Count |
8
|
|
Rotatable Bond Count |
11
|
|
Heavy Atom Count |
29
|
|
Complexity |
672
|
|
Defined Atom Stereocenter Count |
0
|
|
InChi Key |
IXTMWRCNAAVVAI-UHFFFAOYSA-N
|
|
InChi Code |
InChI=1S/C19H27N3O5S2/c1-22(13-12-16-4-6-17(7-5-16)20-28(2,23)24)14-15-27-19-10-8-18(9-11-19)21-29(3,25)26/h4-11,20-21H,12-15H2,1-3H3
|
|
Chemical Name |
N-(4-(2-(methyl(2-(4-(methylsulfonamido)phenoxy)ethyl)amino)ethyl)phenyl)methanesulfonamide
|
|
Synonyms |
|
|
HS Tariff Code |
2934.99.9001
|
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
|
|||
---|---|---|---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.5 mg/mL (5.66 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.5 mg/mL (5.66 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.5 mg/mL (5.66 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.2647 mL | 11.3235 mL | 22.6470 mL | |
5 mM | 0.4529 mL | 2.2647 mL | 4.5294 mL | |
10 mM | 0.2265 mL | 1.1323 mL | 2.2647 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.