Dinoprost (Cerviprost; HSDB 3315; Panacelan)

Alias: Cerviprost HSDB 3315 Panacelan Prostaglandin F2a Prostaglandin F2alpha
Cat No.:V6952 Purity: ≥98%
Dinoprost (Prostaglandin F2alpha) is a potent, naturally occurring and orally bioactiveprostaglandin that acts as a prostaglandin F (PGF) receptor (FP receptor) agonist with oxytocic, luteolytic, and abortifacient activities.
Dinoprost (Cerviprost; HSDB 3315; Panacelan) Chemical Structure CAS No.: 551-11-1
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
50mg
100mg
Other Sizes

Other Forms of Dinoprost (Cerviprost; HSDB 3315; Panacelan):

  • Dinoprost Tromethamine
  • (5R)-Dinoprost ((5R)-dinoprost; Prostaglandin F2β; PGF2β)
  • Dinoprost-d4 (Prostaglandin F2a-d4; PGF2α-d4)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Dinoprost (Prostaglandin F2alpha) is a potent, naturally occurring and orally bioactive prostaglandin that acts as a prostaglandin F (PGF) receptor (FP receptor) agonist with oxytocic, luteolytic, and abortifacient activities. It is a naturally occurring luteolytic hormone produced locally in the endometrial luminal epithelium and corpus luteum (CL), and plays a key role in the onset and progression of labour, also used as a prostaglandin in medicine to induce labor.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Goat luteal cells undergo necrosis, autophagy, and endoplasmic reticulum prolapse when exposed to dinoprost (prostaglandin F2α; 1 μM) for a full day [1]. Dinoprost (1 μM) raised GRP78 and UPR sensor substantially throughout a 24-hour period.
Cell Assay
Apoptosis analysis [1]
Cell Types: Goat luteal cells
Tested Concentrations: 1 μM
Incubation Duration: 24 hrs (hours)
Experimental Results: Significant apoptosis rate increased (15.62±3.12%). Autophagy detection [1]
Cell Types: goat luteal cells
Tested Concentrations: 1 μM
Incubation Duration: 24 hrs (hours)
Experimental Results: There is extensive overlap between LC3 and LAMP1 in luteal cells, and autophagic lysosomes are formed in goat luteal cells.

Western Blot Analysis[1]
Cell Types: Goat luteal cells
Tested Concentrations: 1 μM
Incubation Duration: 24 hrs (hours)
Experimental Results: Expression of GRP78 and UPR sensors, including cleaved ATF6, phospho-EIF2S1, EIF2S1, ATF4, phospho-IRE1, autologous Phagocytosis-related intracellular protein LC3-II and pro-apoptotic factor cleaved Caspase3 were Dramatically increased.
References
[1]. Hagen Thieme, et al. Endothelin antagonism: effects of FP receptor agonists prostaglandin F2alpha and fluprostenol on trabecular meshwork contractility. Invest Ophthalmol Vis Sci. 2006 Mar;47(3):938-45.
[2]. Xin Wen, et al. Prostaglandin F2α Induces Goat Corpus Luteum Regression via Endoplasmic Reticulum Stress and Autophagy. Front Physiol. 2020 Sep 11;11:868.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C20H34O5
Molecular Weight
354.4810
CAS #
551-11-1
Related CAS #
Dinoprost tromethamine salt;38562-01-5;(5R)-Dinoprost;4510-16-1;Dinoprost-d4;34210-11-2;Dinoprost-d9
SMILES
CCCCC[C@H](O)/C=C/[C@@H]1[C@H]([C@@H](O)C[C@H]1O)C/C=C\CCCC(O)=O
InChi Key
PXGPLTODNUVGFL-YNNPMVKQSA-N
InChi Code
InChI=1S/C20H34O5/c1-2-3-6-9-15(21)12-13-17-16(18(22)14-19(17)23)10-7-4-5-8-11-20(24)25/h4,7,12-13,15-19,21-23H,2-3,5-6,8-11,14H2,1H3,(H,24,25)/b7-4-,13-12+/t15-,16+,17+,18-,19+/m0/s1
Chemical Name
(Z)-7-((1R,2R,3R,5S)-3,5-dihydroxy-2-((S,E)-3-hydroxyoct-1-en-1-yl)cyclopentyl)hept-5-enoic acid
Synonyms
Cerviprost HSDB 3315 Panacelan Prostaglandin F2a Prostaglandin F2alpha
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ~100 mg/mL (~282.10 mM)
DMSO : ~100 mg/mL (~282.10 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (7.05 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (7.05 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.8210 mL 14.1052 mL 28.2103 mL
5 mM 0.5642 mL 2.8210 mL 5.6421 mL
10 mM 0.2821 mL 1.4105 mL 2.8210 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top