Dimethylcurcumin

Alias: ASC-J9; ASC-J-9; ASC J9; GO-Y025; GO-Y 025; GO Y025;
Cat No.:V4725 Purity: ≥98%
Dimethylcurcumin (formerly known as ASC-J9; GO-Y025) is anandrogen receptor(AR)degradation enhancer that effectively suppresses castration resistant prostate cancer cell proliferation and invasion.
Dimethylcurcumin Chemical Structure CAS No.: 52328-98-0
Product category: Androgen Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Dimethylcurcumin (formerly known as ASC-J9; GO-Y025) is an androgen receptor (AR) degradation enhancer that effectively suppresses castration resistant prostate cancer cell proliferation and invasion. Dimethylcurcumin suppresses renal cell carcinoma progression by targeting an androgen receptor-dependent HIF2α/VEGF signaling pathway.ASC-J9 treatment enhanced BCG efficacy to suppress bladder cancer cell proliferation via increasing the recruitment of monocytes/macrophages that involved the promotion of BCG attachment/internalization to the bladder cancer cells through increased integrin-α5β1 expression and IL6 release.

Biological Activity I Assay Protocols (From Reference)
Targets
androgen receptor (AR) degradation enhancer
ln Vitro
In a range of human PCa cells, dimethylcurcumin (ASC-J9) can degrade fAR and AR3 in a dose-dependent manner. In CWR22Rv1-fARKD cells, dimethylcurcumin (ASC-J9) can also efficiently block genes that are targeted by AR. In all three PCa cell lines, dimethylcurcumin (ASC-J9) (5 or 10 µM) effectively reduced DHT-induced cell proliferation. Dimethylcurcumin (ASC-J9) breaks down fAR and ectopic AR3 in C81 and C4-2 cells, which suppresses the development of cells and genes targeted by AR [1]. Dimethylcurcumin (ASC-J9) breaks off the connection between AR and AR coregulators, hence preferentially promoting the degradation of AR. Cells accumulate less AR when ASC-J9 AR-112Q is present. SBMA PC12/AR-112Q cell aggregation of AR-112Q is inhibited by dimethylcurcumin (ASC-J9) [2].
ln Vivo
In xenograft tumors, dimethylcurcumin (ASC-J9) (75 mg/kg, i.p.) degrades fAR and AR3, and tumors treated with SC-J9 exhibit a significant reduction in Ki67-positive cells [1]. In AR-97Q mice, intraperitoneal injections of 50 mg/kg dimethylcurcumin (ASC-J9) every 48 hours markedly reduced the symptoms of SBMA and enhanced neuromuscular pathology. Serum testosterone concentrations in SBMA animals treated with dimethylcurcumin (ASC-J9) are comparatively normal [2]. When compared to mice getting traditional ADT/castration with low serum androgen levels, mice treated with ASC-J9 showed noticeably reduced prostate tumor sizes [3].
Enzyme Assay
Western Blot Analysis, Quantitative Real-time Polymerase Chain Reaction, and Luciferase Reporter Assay [1]
Cells were cultured and treated with or without ASC-J9 for 24 hours in 10% charcoal-dextran-stripped fetal bovine serum (CD-FBS) media. Cell lysates were harvested and subjected to Western blot analysis. Quantitative real-time polymerase chain reaction (qPCR) was performed in triplicate with a Bio-Rad iCycler system (Bio-Rad, Hercules, CA); and messenger RNA (mRNA) levels of PSA, TMPRSS2, FKBP5, and GAPDH were measured. Cells were transiently transfected with mouse mammary tumor virus luciferase reporter (MMTV-Luc) or ARE4-Luc plus pRL-TK as internal control. Luciferase activities were measured using GloMax 20/20 Luminometer (Promega, Madison, WI).
Cell Assay
Cell Growth Assay[1]
Cells were treated with vehicle, 1 nM dihydrotestosterone (DHT), 5 µM Casodex, and 5 or 10 µM ASC-J9 in 10% CD-FBS medium. The media were replenished every other day, and we followed the standard MTT assay protocol.
Animal Protocol
In Vivo Tumor Growth Assay [1]
Animal procedures were conducted in accordance with the protocol approved by the University of Rochester Committee on Animal Resources. CWR22Rv1 cells (1 x 106 cells per site) were injected into both anterior prostates (orthotopic) of castrated nude mouse after 2 weeks of implantation. The mice were randomly divided into two groups (four mice/eight tumors each group) and either received 75 mg/kg ASC-J9 intraperitoneal injection or vehicle control every other day. After 4 weeks of treatment, all mice were killed to examine the tumor growth. Body weights and mice activity were measured weekly.
References
[1]. Yamashita S, et al. ASC-J9 suppresses castration-resistant prostate cancer growth through degradation of full-length and splice variant androgen receptors. Neoplasia. 2012 Jan;14(1):74-83.
[2]. Yang Z, et al. ASC-J9 ameliorates spinal and bulbar muscular atrophy phenotype via degradation of androgen receptor. Nat Med. 2007 Mar;13(3):348-53.
[3]. Lee SO, et al. New therapy targeting differential androgen receptor signaling in prostate cancer stem/progenitor vs non-stem/progenitor cells. J Mol Cell Biol. 2012 Jul 24.
[4]. Ma W, et al. Targeting androgen receptor with ASC-J9 attenuates cardiac injury and dysfunction in experimental autoimmune myocarditis by reducing M1-like macrophage. Biochem Biophys Res Commun. 2017 Apr 15;485(4):746-752. doi: 10.1016/j.bbrc.2017.02.123
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C23H24O6
Molecular Weight
396.43306
Exact Mass
396.1572
Elemental Analysis
C, 69.68; H, 6.10; O, 24.21
CAS #
52328-98-0
Appearance
Light yellow to red solid powder
LogP
4.6
tPSA
74.2Ų
SMILES
O=C(/C=C(O)/C=C/C1=CC=C(OC)C(OC)=C1)/C=C/C2=CC=C(OC)C(OC)=C2
InChi Key
ZMGUKFHHNQMKJI-CIOHCNBKSA-N
InChi Code
InChI=1S/C23H24O6/c1-26-20-11-7-16(13-22(20)28-3)5-9-18(24)15-19(25)10-6-17-8-12-21(27-2)23(14-17)29-4/h5-15,24H,1-4H3/b9-5+,10-6+,18-15-
Chemical Name
(1E,4Z,6E)-1,7-bis(3,4-dimethoxyphenyl)-5-hydroxyhepta-1,4,6-trien-3-one
Synonyms
ASC-J9; ASC-J-9; ASC J9; GO-Y025; GO-Y 025; GO Y025;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ≥ 50 mg/mL (~126.13 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.17 mg/mL (5.47 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 21.7 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.2 mg/mL (5.5 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + + 45% Saline
For example, if 1 mL of working solution is to be prepared, you can take 100 μL of 21.7 mg/mL of DMSO stock solution and add tO + 400 μL of PEG300, mix well (clear solution); Then add 50 μL of Tween 80 to the above solution, mix well (clear solution); Finally, add 450 μL of saline to the above solution, mix well (clear solution).
Preparation of saline: Dissolve 0.9 g of sodium chloride in ddH ₂ O and make up to 100 mL to obtain a clear and transparent saline solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.5225 mL 12.6126 mL 25.2251 mL
5 mM 0.5045 mL 2.5225 mL 5.0450 mL
10 mM 0.2523 mL 1.2613 mL 2.5225 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Dimethylcurcumin


    ASC-J9 suppresses AR-targeted genes, AR transactivation, and cell growth through AR degradation in CRPC cells.2012 Jan;14(1):74-83.

  • Dimethylcurcumin


    Therapeutic effect of ASC-J9in vivo. (A) Evaluation of tumor volumes of CWR22Rv1 xenografts after ASC-J9 treatment.(B) Body weight determination during ASC-J9 treatment. (C) Histologic examination of tumor tissues after ASC-J9 treatment.2012 Jan;14(1):74-83.

  • Dimethylcurcumin


    ASC-J9 suppresses AR-targeted genes and cell growth by degradation of fAR and ectopic AR3 in C81 and C4-2 cells.2012 Jan;14(1):74-83.

Contact Us Back to top