yingweiwo

D-Luciferin Sodium

Alias: D-Luciferin Sodium; D-Luciferin sodium salt; Sodium (S)-2-(6-hydroxybenzo[d]thiazol-2-yl)-4,5-dihydrothiazole-4-carboxylate; D-Luciferin Sodium; D-Luciferin, Sodium Salt; D-Luciferin (sodium); C11H7N2NaO3S2; D-Luciferin sodium salt monohydrate;
Cat No.:V20117 Purity: ≥98%
D-Luciferin sodium is novel and potent heterocyclic light-emitting compound and a natural substrate of luciferase enzyme used to detect cell activity.
D-Luciferin Sodium
D-Luciferin Sodium Chemical Structure CAS No.: 103404-75-7
Product category: Fluorescent Dye
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of D-Luciferin Sodium:

  • D-luciferin (Firefly luciferin)
  • D-Luciferin potassium
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Purity: ≥98%

Product Description

D-Luciferin sodium is novel and potent heterocyclic light-emitting compound and a natural substrate of luciferase enzyme used to detect cell activity. It requires ATP for its reaction, emitting a greenish-yellow luminescence at a peak wavelength of approximately 530 nm. The salt form of luciferin dissolves in water or other typical buffers.

Biological Activity I Assay Protocols (From Reference)
Targets
Natural substrate of luciferase (Luc) enzyme
ln Vitro
1. Note:
a) The D-luciferin salts (sodium or potassium) exhibits a high degree of solubility, up to 100 mM, in aqueous buffer (pH 6.1-6.5). The stock solution can be prepared with ATP free water and stored in the dark at -20 ° C. Free acids must be neutralized with an appropriate base in order to dissolve. At higher pH values, fluorescein will form dehydrofluorescein under alkaline catalysis and racemize into L-isomer (L-luciferin).
b) D-fluorescein can be used in any existing report analysis or ATP analysis system.
c) If testing ATP, please wear gloves and use ATP free containers to minimize all possible sources of ATP contamination. Only use sterile ATP free water and reagents. Prepare all reagents using high-pressure sterilized water.
2. Experimental protocol: This protocol may be adjusted to meet your specific requirements, as it only serves as a guide.
The following scheme is an example of preparation of D-Luciferin sodium/potassium salts. It is suitable for most cell types and in vivo animal use.
2.1 Example of In vitro Bioluminescence Image Analysis.
a) Prepare 100 mM (100-200X) D-fluorescein sodium or potassium stock solution in sterile water. Mix well. Immediately use or aliquot it, store at -20 ° C, avoid freeze-thaw cycles, and avoid exposure to light.
b) Prepare 0.5-1 mM D-Luciferin working solution in pre-heated tissue culture medium.
c) Suck out the culture medium from the cultured cells.
d) Add D-Luciferin working solution to the cells and incubate them at 37 ° C for 5-10 minutes before imaging.
2.2 Example for analyzing bioluminescence images in vivo
a) Prepare 15 mg/mL D-Luciferin stock solution in DPBS, free of Mg2+and Ca2+. Mix evenly.
b) The filter removes bacteria from the solution through a 0.2 μ M filter. Immediately use or aliquot it and store at -20 ° C to avoid freeze-thaw cycles and exposure to light.
c) 10-15 minutes before imaging, intraperitoneal (IP) injection of D-Luciferin at 150 mg/kg (or 10 μ L/g fluorescein stock solution) of animal body weight.
Attention: Fluorescein kinetics studies should be conducted on each animal model to determine peak signal time.
2.3 Example for D-Luciferin Reporter Gene Testing
a) Prepare 100 mM D-Luciferin stock solution in sterile water. Immediately use or aliquot it, store at -20 ° C, avoid freeze-thaw cycles, and avoid exposure to light.
b) Prepare 1 mM D-Luciferin working solution and 3 mM ATP, 1 mM DTT, and 15 mM MgSO4 in 25 mM Tricine buffer pH 7.8.
c) Transfer 5-10 μ L of cell lysate to a microplate. Use lysis reagents or buffer solutions without lysate as blank.
d) According to the manufacturer's instructions, infuse the luminescence meter with D-Luciferinworking solution.
e) Immediately inject 200 μ L of D-Luciferin working solution, with an integration time of 10 seconds.
ln Vivo
The most popular method at the moment is bioluminescence (BLI), which uses D-luciferin substrate and firefly luciferase (Fluc) as a reporter gene. A time-intensity curve was created by graphing the overall signal intensity versus the amount of time following D-luciferin injection. Apart from the peak signal, surrogate signals for the peak signal were identified as the signals at predetermined time intervals (5, 10, 15, and 20 min) following D-luciferin injection. To depict the pattern of temporal changes following D-luciferin injection, the signal in a given time-intensity curve is normalized against the peak signal in the curve [3]. Use 10 μL of D-luciferin stock solution (intraperitoneal or intravenous) for every gram of body weight. An injection of 20 g should typically contain 200 μL due to the conventional dose of 150 mg/kg. To dissolve the D-luciferin (potassium or sodium salt) solution to a final concentration of 15 mg/mL, thaw it and dilute it in dPBS (clear calcium or magnesium). Wet a 0.22 µM filter with 5–10 mL of sterile HO, then drain. ..Pass the D-luciferin solution through a 0.22 µM syringe filter that has been produced.
Enzyme Assay
D-luciferin is the natural substrate of all luciferases that catalyze the production of light in bioluminescent insects. The present review covers the synthesis of D-luciferin and derivatives or analogues that are substrates or inhibitors of the luciferase from the American firefly Photinus pyralis, the enzyme more frequently used in techniques of in vitro and optical imaging[1].
Animal Protocol
The peak signal or the signal at a predetermined, fixed time point after D-luciferin injection may be used for the quantitative analysis of in vivo bioluminescence imaging. We repeatedly performed sequential bioluminescence imaging after subcutaneous injection of D-luciferin in mice bearing subcutaneous tumors. The peak time in each measurement became shorter early after cell inoculation, presumably due to gradual establishment of intratumoral vasculature, and reached a plateau of about 10 min on day 10. Although the correlation between the signal at a fixed time point and the peak signal was high, the signal at 5 or 10 min normalized for the peak signal was lower for earlier days, which caused overestimation of tumor growth. The time course of the signals after D-luciferin injection may vary with time after cell inoculation, and this variation should be considered when determining the imaging protocol for quantitative bioluminescence tumor monitoring.[2]
References
[1]. Giuseppe Meroni, et al. D-Luciferin, derivatives and analogues: synthesis and in vitro/in vivo luciferase-catalyzed bioluminescent activity. ARKIVOC 2009 (i) 265-288 (https://www.arkat-usa.org/get-file/29712.html).
[2]. Rajesh Shinde, et al. Luciferin derivatives for enhanced in vitro and in vivo bioluminescence assays. Biochemistry. 2006 Sep 19;45(37):11103-12.
[3]. Inoue Y, et al. Timing of imaging after d-luciferin injection affects the longitudinal assessment of tumor growthusing in vivo bioluminescence imaging. Int J Biomed Imaging. 2010;2010:471408
Additional Infomation
The fascinating phenomenon of bioluminescence and the wide range of biotechnological applications in optical imaging makes the chemistry of D-luciferin and related analogues extremely interesting. This goes beyond the early expectations originally suggested by White et al. in 1971: “it is clear that chemically produced excited states are of central importance in bioluminescence; it seems moderately certain that they will also be found to be important in other areas of biology”. 1 The synthetic approach to the preparation of the related benzothiazole system has not moved too far from the original works dating back to nearly forty years ago. However, the chemistry involved is sound and still used for the preparation of D-luciferin and related compounds. These can be very useful as substrates for luciferases in applications such as optical imaging techniques, nowadays widely used for preclinical molecular imaging in cells and small animals. The yellow-green light emitted by the classical enzyme used for this purpose, PpyLuc, is characterized by a broad emission spectrum with a maximum at 560 nm and a low background bioluminescence. This makes in vivo bioluminescence imaging with PpyLuc an easy and highly sensitive method for small-animal molecular imaging. Modulation of the wavelength of the emitted light is an important target, that has mainly been achieved by site-directed mutagenesis of amino acid residues of luciferase. The same result could perhaps be obtained by chemical manipulation of D-luciferin structure, but not many transformations are possible with a relatively simple structure such as that of D-luciferin. In fact, only a few compounds have been prepared and for a reduced number of them it has been demonstrated that the light can be shifted to red in PpyLuc-catalyzed bioluminescence. However, the examples presented in this review suggest that, in addition to biochemical engineering of the enzyme, ingenuity and fantasy of synthetic organic chemistry can bring new exciting advancement in this fascinating area of research. Finally, other analogues of D-luciferin may meet expectations for new applications of in vivo optical imaging, as recently disclosed by reports that enlighten the possibility of binding a wide variety of compounds, including peptides or functionalized PEGs, to the amino group of D-6′-aminoluciferin. [1]
Staining Example 1:
D-Luciferin sodium may be used as a substrate of luciferases for in vivo imaging.
Method: For bioluminescence imaging.
1). Anesthetize mice, then inject mice with D-Luciferin sodium (75 mg/kg) for image.
2). Use the bioluminescence imaging system for image.
Staining Example 2:
D-Luciferin sodium may be used as a substrate of luciferases for in vivo imaging to monitor tumor growth.
Method: For bioluminescence imaging.
1). Inject D-Luciferin sodium (150 mg/kg; intraperitoneal injection) into the mice.
2). Use a bioluminescence imaging system for image.
Staining Example 3:
D-Luciferin sodium may be used as a substrate of luciferases for a split-luciferase (LUC) assay.
Method: For split-luciferase (LUC) assay.
1). Incubate plant sample (leaves) with D-Luciferin sodium (1 mM; 10 min) luciferin.
2). Use a Photek camera to capture signals and images.
Staining Example 3:
D-Luciferin sodium may be used as a substrate of luciferases for in vivo imaging to monitor tumor growth.
Method: For bioluminescence imaging.
1). Inject D-Luciferin sodium (150 mg/kg; intraperitoneal injection) into the mice.
2). Use IVIS Lumina XRMS Series for bioluminescence imaging.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C11H7N2NAO3S2
Molecular Weight
302.29
Exact Mass
301.979
Elemental Analysis
C, 43.71; H, 2.33; N, 9.27; Na, 7.61; O, 15.88; S, 21.21
CAS #
103404-75-7
Related CAS #
D-Luciferin;2591-17-5;D-Luciferin potassium;115144-35-9
PubChem CID
2733762
Appearance
Typically exists as Light yellow to yellow solids at room temperature
Boiling Point
473.7ºC at 760mmHg
Flash Point
240.3ºC
Vapour Pressure
2.78E-10mmHg at 25°C
LogP
0.049
SMILES
S1C(C2=NC3C([H])=C([H])C(=C([H])C=3S2)O[H])=N[C@@]([H])(C(=O)[O-])C1([H])[H].[Na+]
InChi Key
BZNVUYVALNTPBG-WJCSTRGMSA-M
InChi Code
InChI=1S/C11H8N2O3S2.Na/c14-5-1-2-6-8(3-5)18-10(12-6)9-13-7(4-17-9)11(15)16/h1-3,7,13H,4H2,(H,15,16)/q+1/p-1/b10-9+/t7-/m1./s1
Chemical Name
sodium (S,E)-2-(6-oxobenzo[d]thiazol-2(6H)-ylidene)thiazolidine-4-carboxylate
Synonyms
D-Luciferin Sodium; D-Luciferin sodium salt; Sodium (S)-2-(6-hydroxybenzo[d]thiazol-2-yl)-4,5-dihydrothiazole-4-carboxylate; D-Luciferin Sodium; D-Luciferin, Sodium Salt; D-Luciferin (sodium); C11H7N2NaO3S2; D-Luciferin sodium salt monohydrate;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ~250 mg/mL (~826.99 mM)
DMSO : ~100 mg/mL (~330.80 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (8.27 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (8.27 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: 100 mg/mL (330.80 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.3081 mL 16.5404 mL 33.0808 mL
5 mM 0.6616 mL 3.3081 mL 6.6162 mL
10 mM 0.3308 mL 1.6540 mL 3.3081 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us