D-64131

Alias: D 64131; D-64131; D64131; (5-Methoxy-1H-indol-2-yl)phenylmethanone
Cat No.:V2890 Purity: ≥98%
D-64131, an aroylindole analog, is a novel, oral and potent inhibitor of tubulin polymerization.
D-64131 Chemical Structure CAS No.: 74588-78-6
Product category: Microtubule(Tubulin)
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

D-64131, an aroylindole analog, is a novel, oral and potent inhibitor of tubulin polymerization. D-64131 competitively binds to the colchicine binding site of αβ-Tubulin, acting as a mitotic inhibitor. When tested against the human HeLa/KB cervical, SK-OV-3 ovarian, and U373 astrocytoma carcinoma cell lines, it demonstrated high cytotoxicity at IC(50) = 20 to 75 nM. The arrest of the cell cycle in the G2/M phase was correlated with the inhibition of proliferation. D-64131 is administered orally in vivo to inhibit the growth of tumor models in mice. D-64131 shows great promise as a cancer treatment agent.

Biological Activity I Assay Protocols (From Reference)
Targets
tubulin polymerization (IC50 = 0.53 μM)
ln Vitro
D-64131 is antimitotic because it binds to β-tubulin, which causes microtubules to become unstable and stops mitotic cells in the M-phase[1].
D-64131 inhibits tumor cell proliferation from 12 out of 14 distinct organs and tissues, with mean IC50 values of 62 nM[1].
D-64131 is cytotoxic to tumor cell lines that are MDR/MRP[1].
D-64131 inhibits the cell cycle and proliferation of U373 at IC50s of 74 nM and 62.7 nM, respectively[2].
ln Vivo
D-64131 (200-400 mg/kg; p.o.; daily; days 1-5, 8-9, and 15-18) significantly reduces the growth of tumors in the human amelanoic melanoma MEXF 989 tumor xenograft mice model[1].
D-64131 is well tolerated and has oral bioavailability at efficacious doses[1].
Enzyme Assay
Using biotin-labeled tubulin, streptavidin-coated yttrium SPA beads, and [3H]colchicine (1 mCi/ml; specific activity, 76.5 Ci/mmol), the tubulin binding assay was carried out in accordance with Tahit et al. In a nutshell, the binding mixture consists of 100 μl of G-PEM buffer, pH 6.9 (80 mm PIPES, 1 mm MgCl2, 1 mm EGTA, and 5% glycerol), 0.08 μm [3H]colchicine, 1 mm GTP, and 0.5 μg of biotin-tubulin. Prior to adding tubulin, the test compound and [3H]colchicine were added. Following a 2-hour incubation period at 37°C, 20 μl of SPA beads (80 μg in P-GEM buffer) were introduced. The SPA beads were allowed to settle for 45 minutes at room temperature after an additional 30 minutes of agitation incubation. Scintillation counting was then performed using a MicroBeta Trilux counting apparatus.
Cell Assay
D-64131 is administered orally in vivo to inhibit the growth of tumor models in mice. To achieve a final DMSO concentration of 10%, D-64131 was first freshly dissolved in DMSO and then diluted with PBS containing 0.05% v/v Tween 80. For all experiments, 6–8 week old outbred nude mice with an NMRI genetic background were utilized. Based on the vitroselectivity of D-64131 toward melanoma (data not shown), the human amelanoic melanoma MEXF 989 tumor xenograft model was selected for the experiments. The tumors were engrafted from serial passage growing s.c. in nude mice. Approximately 25 mg of fragments were s.c. implanted in each of the animals' flanks. Details of the animal experiments and data analysis were described by Mahboobi et al. The 200 and 400 mg/kg/day doses were administered p.o. to the tumor-bearing, nude MEXF 989 mice on days 1-4, 8-9, and 15-18. Before beginning tumor experiments, it was established that the medication dosages and treatment plan employed in two separate studies were well tolerated by non-tumor bearing nude mice.
Animal Protocol
Outbred nude mice (6-8 weeks), human amelanoic melanoma MEXF 989 tumor xenograft model[1]
200 mg/kg, 400 mg/kg
Oral administration, daily, on days 1-5, 8-9, and 15-18 after xenograft
References

[1]. 2-Aroylindoles, a novel class of potent, orally active small molecule tubulin inhibitors. Cancer Research (2002), 62(11), 3113-3119.

[2]. Synthetic 2-aroylindole derivatives as a new class of potent tubulin-inhibitory, antimitotic agents. J Med Chem. 2001 Dec 20;44(26):4535-53.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C16H13NO2
Molecular Weight
251.28
Exact Mass
251.09
Elemental Analysis
C, 76.48; H, 5.21; N, 5.57; O, 12.73
CAS #
74588-78-6
Related CAS #
74588-78-6
Appearance
Solid powder
SMILES
COC1=CC2=C(C=C1)NC(=C2)C(=O)C3=CC=CC=C3
InChi Key
ICMIJSRDISNKOC-UHFFFAOYSA-N
InChi Code
InChI=1S/C16H13NO2/c1-19-13-7-8-14-12(9-13)10-15(17-14)16(18)11-5-3-2-4-6-11/h2-10,17H,1H3
Chemical Name
(5-methoxy-1H-indol-2-yl)-phenylmethanone
Synonyms
D 64131; D-64131; D64131; (5-Methoxy-1H-indol-2-yl)phenylmethanone
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~10 mM
Water: <1 mg/mL
Ethanol: <1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (9.95 mM) (saturation unknown) in 10% DMSO + 40% PEG300 +5% Tween-80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 + to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.9796 mL 19.8981 mL 39.7962 mL
5 mM 0.7959 mL 3.9796 mL 7.9592 mL
10 mM 0.3980 mL 1.9898 mL 3.9796 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • D-64131


    Inhibition of tubulin polymerization and [3H]colchicine binding.2002 Jun 1;62(11):3113-9.

  • D-64131


    Cell cycle specificity.2002 Jun 1;62(11):3113-9.

  • D-64131


    Effect ofd-64131 on the human melanoma MEXF 989 tumor xenograft.2002 Jun 1;62(11):3113-9.

Contact Us Back to top