Cyproheptadine HCl hydrate

Alias: Periactin; Eiproheptadine; Cyproheptadine Hydrochloride; Sesquihydrate; Periactinol; Dronactin; Ciproheptadina; Peritol
Cat No.:V19012 Purity: ≥98%
Cyproheptadine HCl hydrate is a hydrochloride salt form of cyproheptadine which is a histamine receptor antagonist.
Cyproheptadine HCl hydrate Chemical Structure CAS No.: 41354-29-4
Product category: 5-HT Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5g
10g
50g
Other Sizes

Other Forms of Cyproheptadine HCl hydrate:

  • Cyproheptadine HCl
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Cyproheptadine HCl hydrate is a hydrochloride salt form of cyproheptadine which is a histamine receptor antagonist. Furthermore, cyproheptadine functions as an antimuscarinic and serotonin reagent. Pituitary-dependent Cushing's syndrome, anorexia, migraine, pruritic dermatoses, and postgastrectomy-dumping syndrome are among the conditions it is used to treat. Cyproheptadine, a 5-HT2A receptor antagonist, has been shown to counteract serotonin-induced platelet aggregation caused by ADP both in vitro and in vivo, indicating that it has antiplatelet and thromboprotective properties.

Biological Activity I Assay Protocols (From Reference)
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C21H21N.HCL.1.5H2O
Molecular Weight
350.0
Exact Mass
287.17
Elemental Analysis
C, 71.88; H, 7.18; Cl, 10.10; N, 3.99; O, 6.84
CAS #
41354-29-4
Related CAS #
Cyproheptadine hydrochloride; 969-33-5
Appearance
Solid powder
SMILES
CN1CC/C(CC1)=C2C3=CC=CC=C3C=C(C=CC=C4)C4=C/2.[H]O[H].[H]Cl
InChi Key
OERTXEVZEWASFH-UHFFFAOYSA-N
InChi Code
InChI=1S/C21H21N.ClH.H2O/c1-22-12-10-16(11-13-22)21-15-18-7-3-2-6-17(18)14-19-8-4-5-9-20(19)21;;/h2-9,14-15H,10-13H2,1H3;1H;1H2
Chemical Name
4-(dibenzo[1,2-a:1',2'-e][7]annulen-11-ylidene)-1-methylpiperidine hydrochloride sesquihydrate
Synonyms
Periactin; Eiproheptadine; Cyproheptadine Hydrochloride; Sesquihydrate; Periactinol; Dronactin; Ciproheptadina; Peritol
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~33.3 mg/mL (~95 mM)
H2O: ~0.67 mg/mL (~1.9 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 3 mg/mL (8.55 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 30.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 3 mg/mL (8.55 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 30.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 3 mg/mL (8.55 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 30.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.8571 mL 14.2857 mL 28.5714 mL
5 mM 0.5714 mL 2.8571 mL 5.7143 mL
10 mM 0.2857 mL 1.4286 mL 2.8571 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT02418949 Active
Recruiting
Drug: Placebo for Cyproheptadine
Drug: Cyproheptadine
Stroke
Hemiparesis
Muscle Spasticity
Shirley Ryan AbilityLab November 2015 Not Applicable
NCT06175273 Not yet recruiting Drug: Cyproheptadine
Drug: Dronabinol
Other: Standard of Care
Pediatric Cancer
Muscle Loss
Malnutrition, Child
Corey Hawes January 2024 Phase 2
Phase 3
NCT05469165 Recruiting Drug: Cyproheptadine 4 Mg
Oral Tablet
Other: Placebo
Ischemic Mitral Regurgitation Laval University June 20, 2023 Phase 2
NCT06147622 Not yet recruiting Drug: Prazosin + cyproheptadine
Drug: KT110
Alcohol Use Disorder Kinnov Therapeutics February 2024 Phase 1
NCT00066248 Completed Drug: cyproheptadine hydrochloride
Drug: megestrol acetate
Brain Tumor
Cachexia
Leukemia
Lymphoma
University of South Florida June 2003 Phase 2
Biological Data
  • Combination of Cyproheptadine and pizotifen inhibits serotonin-enhanced ADP-induced human platelet aggregation in vitro. PLoS One . 2014 Jan 23;9(1):e87026.
  • Cyproheptadine and pizotifen inhibit serotonin-enhanced ADP-induced mouse platelet aggregation in vitro. PLoS One . 2014 Jan 23;9(1):e87026.
  • Cyproheptadine, and pizotifen inhibit intracellular calcium elevation and Src activation in human platelets in vitro. PLoS One . 2014 Jan 23;9(1):e87026.
Contact Us Back to top