Coptisine chloride

Cat No.:V18630 Purity: ≥98%
Coptisine chloride is an alkaloid extracted from Coptis chinensis.
Coptisine chloride Chemical Structure CAS No.: 6020-18-4
Product category: IDO
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
Other Sizes

Other Forms of Coptisine chloride:

  • Coptisine
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Coptisine chloride is an alkaloid extracted from Coptis chinensis. It is an effective noncompetitive IDO inhibitor (antagonist) with Ki of 5.8 μM and IC50 of 6.3 μM. Coptisine chloride is a potent H1N1 neuraminidase (NA-1) inhibitor (antagonist) with IC50 of 104.6 μg/mL and can be used for influenza A virus (H1N1) infection.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
Coptisine has an IC50 value of 6.3 μM and a Ki value of 5.8 μM, making it a very effective non-competitive IDO inhibitor[1]. The growth of A549, H460, H2170, MDA-MB-231, and HT-29 cells is inhibited by copoxine (0.1-100 μM), with IC50 values of 18.09, 29.50, 21.60, 20.15, and 26.60 μM, in that order. In A549 cells, coptisine (12.5, 25, and 50 μM) concentration-dependently causes G2/M arrest and apoptosis, downregulates the expression of cyclin B1, cdc2, and cdc25C, and increases the expression of pH2AX and p21. In A549 cells, copoposite (12.5, 25, 50 μM) likewise causes mitochondrial dysfunction and triggers caspase activation. Additionally, ROS levels are raised by coptisine (50 μM) in a time-dependent manner (0.5, 1, 2, 4, 12, and 24 hours) [3].
ln Vivo
Mice's LD50 value for coptisine was 880.18 mg/kg, and its toxicity increased with concentration. The dosage of 154 mg/kg/day for 90 days did not cause toxicity in SD rats. In addition to increasing HDL-c content to varied degrees and slowing down the weight gain brought on by the HFHC diet, copoxine (23.35, 46.7, 70.05 mg/kg, po) increased fecal cholesterol and TBA levels in hamsters in a dose-dependent manner. It also reduced TC, TG, and LDL-c levels in the serum of the animals. Inducing the expression of SREBP-2, LDLR, and CYP7A1 proteins involved in cholesterol metabolism, coptisine (70.05 mg/kg, po) lowers the level of HMGCR protein expression [2].
References
[1]. Yu D, et al. The IDO inhibitor coptisine ameliorates cognitive impairment in a mouse model of Alzheimer's disease. J Alzheimers Dis. 2015;43(1):291-302.
[2]. He K, et al. The safety and anti-hypercholesterolemic effect of coptisine in Syrian golden hamsters. Lipids. 2015 Feb;50(2):185-94.
[3]. Rao PC, et al. Coptisine-induced cell cycle arrest at G2/M phase and reactive oxygen species-dependent mitochondria-mediated apoptosis in non-small-cell lung cancer A549 cells. Tumour Biol. 2017 Mar;39(3):1010428317694565.
[4]. Zhou X, et al. Inhibition activity of a traditional Chinese herbal formula Huang-Lian-Jie-Du-Tang and its major components found in its plasma profile on neuraminidase-1. Sci Rep. 2017 Nov 14;7(1):15549
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C19H14CLNO4
Molecular Weight
355.7718
CAS #
6020-18-4
Related CAS #
Coptisine;3486-66-6
SMILES
[Cl-].O1C([H])([H])OC2=C1C([H])=C1C(=C2[H])C([H])([H])C([H])([H])[N+]2C([H])=C3C4=C(C([H])=C([H])C3=C([H])C=21)OC([H])([H])O4
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~10.42 mg/mL (~29.29 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 1.04 mg/mL (2.92 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 10.4 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 2: ≥ 0.5 mg/mL (1.41 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 5.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.8108 mL 14.0540 mL 28.1080 mL
5 mM 0.5622 mL 2.8108 mL 5.6216 mL
10 mM 0.2811 mL 1.4054 mL 2.8108 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top