Cinaciguat

Alias: BAY 582667; BAY-582667; BAY582667; BAY 58-2667; BAY-58-2667; BAY58-2667; Cinaciguat HCl; Cinaciguat hydrochloride
Cat No.:V4213 Purity: ≥98%
Cinaciguat (formerly also known as BAY582667 or BAY58-2667) is a novel and potent activator of soluble guanylate cyclase (sGC) used for acute decompensated heart failure.
Cinaciguat Chemical Structure CAS No.: 329773-35-5
Product category: Guanylate Cyclase
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of Cinaciguat:

  • Cinaciguat HCl
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Cinaciguat (formerly also known as BAY582667 or BAY58-2667) is a novel and potent activator of soluble guanylate cyclase (sGC) used for acute decompensated heart failure. In a rat model of type-1 diabetes mellitus, ciprofloxacin avoids cardiac dysfunction. Cinaciguat has no direct effects on the relaxation and contractility of cardiac myocytes from rats that are normal. By reducing the migration and proliferation of vascular smooth muscle cells following arterial injury, cipracapat inhibits the formation of neointima.

Biological Activity I Assay Protocols (From Reference)
Targets
H3 receptor ( Ki = 0.16 nM )
ln Vitro
Cinaciguat (10 μM) significantly enhances intracellular cGMP production. Cinaciguat has no dose-dependent effects on cell contraction and induces transient changes [2].
ln Vivo
Cinaciguat (10 mg/kg/day, po) treatment of diabetic cholesterol did not affect blood pressure levels but resulted in reduced water recognition. Cinaciguat treatment reduces diabetes-associated oxidation, prevents DM-associated alterations in NO-sGC-cGMP-PKG signaling, and reduces DM-associated cardiac hypertrophy and cellular sterility [1]. Cinaciguat (1-10-100 nM) caused concentration contraction in smooth muscle strips of both WT and apo-sGC mice, but PGF2α had no effect on the relative activity of gastrointestinal smooth muscle strips of WT or apo-sGC [3].
Animal Protocol
Rats are randomized into four groups after DM is confirmed: vehicle-treated control, cinaciguat-treated control, vehicle-treated diabetic, and cinaciguat-treated diabetic groups. Treatment begins immediately upon DM confirmation and lasts for 8 weeks. The animals are given either a 0.5% methylcellulose vehicle or the sGC activator cinaciguat in suspension p.o. (10 mg/kg/day). Daily water consumption is measured and water bottles are filled with the same volume of fresh tap water each morning. To avoid water spilling from the bottles, animal cages are handled carefully and are not moved after the bottles are replaced. Once every two days, the animals' body weight is measured, and the cinaciguat dosage is modified accordingly.
References

[1]. The soluble guanylate cyclase activator cinaciguat prevents cardiac dysfunction in a rat model of type-1 diabetes mellitus. Cardiovasc Diabetol. 2015 Oct 31;14:145.

[2]. The soluble guanylate cyclase stimulator riociguat and the soluble guanylate cyclase activator cinaciguat exert no direct effects on contractility and relaxation of cardiac myocytes from normal rats. Format: AbstractSend to Eur J Pharmaco.

[3]. Influence of cinaciguat on gastrointestinal motility in apo-sGC mice. Neurogastroenterol Motil. 2014 Nov;26(11):1573-85.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C36H39NO5
Molecular Weight
565.69856
Exact Mass
565.28
Elemental Analysis
C, 76.43; H, 6.95; N, 2.48; O, 14.14
CAS #
329773-35-5
Related CAS #
Cinaciguat hydrochloride; 646995-35-9
Appearance
Solid powder
SMILES
C1=CC=C(C=C1)CCC2=CC=C(C=C2)COC3=CC=CC=C3CCN(CCCCC(=O)O)CC4=CC=C(C=C4)C(=O)O
InChi Key
WPYWMXNXEZFMAK-UHFFFAOYSA-N
InChi Code
InChI=1S/C36H39NO5/c38-35(39)12-6-7-24-37(26-30-19-21-33(22-20-30)36(40)41)25-23-32-10-4-5-11-34(32)42-27-31-17-15-29(16-18-31)14-13-28-8-2-1-3-9-28/h1-5,8-11,15-22H,6-7,12-14,23-27H2,(H,38,39)(H,40,41)
Chemical Name
4-[[4-carboxybutyl-[2-[2-[[4-(2-phenylethyl)phenyl]methoxy]phenyl]ethyl]amino]methyl]benzoic acid
Synonyms
BAY 582667; BAY-582667; BAY582667; BAY 58-2667; BAY-58-2667; BAY58-2667; Cinaciguat HCl; Cinaciguat hydrochloride
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~66 mg/mL (~198.6 mM)
Water: ~66 mg/mL
Ethanol: ~66 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: 2.5 mg/mL (4.42 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (4.42 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.7677 mL 8.8386 mL 17.6772 mL
5 mM 0.3535 mL 1.7677 mL 3.5354 mL
10 mM 0.1768 mL 0.8839 mL 1.7677 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT00559650 Terminated Drug: Placebo
Drug: Cinaciguat
(BAY58-2667)
Congestive Heart Failure Bayer December 2007 Phase 2
NCT01067859 Terminated Drug: Placebo
Drug: Cinaciguat
(BAY58-2667)
Acute Heart Failure Bayer March 2010 Phase 2
NCT01064037 Terminated Drug: Placebo
Drug: Cinaciguat
(BAY58-2667)
Heart Decompensation
Heart Failure
Bayer April 2010 Phase 2
NCT01065077 Terminated Drug: Placebo
Drug: Cinaciguat
(BAY58-2667)
Acute Heart Failure Bayer March 2010 Phase 2
Biological Data
  • Effect of diabetes mellitus (DM) and cinaciguat treatment on plasma and myocardial cyclic guanosine monophosphate (cGMP) content. Cardiovasc Diabetol . 2015 Oct 31:14:145.
  • Cinaciguat treatment alleviates diabetes mellitus related oxidative stress. Cardiovasc Diabetol . 2015 Oct 31:14:145.
  • The effect of diabetes mellitus and cinaciguat on myocardial NO-sGC-cGMP-PKG signalling. Cardiovasc Diabetol . 2015 Oct 31:14:145.
Contact Us Back to top