yingweiwo

Brofaromine

Alias: Brofaromine; 63638-91-5; Brofaremine; Consonar; Brofaromine [INN]; Brofaromina; Brofarominum; Brofarmine;
Cat No.:V29817 Purity: ≥98%
Brofaromine (CGP 11305A) is a MAO (monoamine oxidase) inhibitor that can suppress MAO-A with IC50 of 0.2 μM.
Brofaromine
Brofaromine Chemical Structure CAS No.: 63638-91-5
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
50mg
Other Sizes

Other Forms of Brofaromine:

  • Brofaromine Hydrochloride
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Brofaromine (CGP 11305A) is a MAO (monoamine oxidase) inhibitor that can suppress MAO-A with IC50 of 0.2 μM.
Biological Activity I Assay Protocols (From Reference)
Targets
Monoamine oxidase (MAO)
ln Vitro
The impact of brofaromine (CGP 11305A, BRO) on MAO-A activity in cultured cortical cells was assessed in order to assess if the protective effect is connected to the inhibition of MAO-A or results from alternative mechanisms. MAO-A activity in cultured cortical cells was demonstrated to be substantial in the first place, and bromofaromine was found to block this enzyme in a concentration-dependent way. Bromfaramine has an IC50 of 0.19 μM. There is a 0.96 Hill coefficient. At 10 μM, the enzyme was nearly entirely inhibited. In our cultured cortical cells, brofaromine suppresses MAO-A activity in a concentration-dependent way. The IC50 range for brofaromine is 0.01 μM to 0.1 μM[1].
ADME/Pharmacokinetics
Metabolism / Metabolites
Brofaromine has known human metabolites that include O-desmethyl-brofaromine.
Toxicity/Toxicokinetics
mouse LDLo oral 300 mg/kg BEHAVIORAL: CONVULSIONS OR EFFECT ON SEIZURE THRESHOLD Journal of Pharmacology and Experimental Therapeutics., 284(983), 1998 [PMID:9495858]
References

[1]. Pirlindole and dehydropirlindole protect rat cultured neuronal cells against oxidative stress-induced cell death through a mechanism unrelated to MAO-A inhibition. Br J Pharmacol. 2002 Feb;135(3):713-20.

Additional Infomation
It has been shown that the MAO (monoamine oxidase)-B inhibitor deprenyl (DPR, selegiline) protects some cell types against oxidative stress. By decreasing H(2)O(2) production, MAO-A inhibitors could also reduce oxidative stress. This study reports the effect of the MAO-A inhibitors, pirlindole (PIR), dehydropirlindole (DHP), brofaromine (BRO) and moclobemide (MCL) on primary-cultured brain cells exposed to iron-mediated toxicity. A comparison with trolox (TRO), a hydrosoluble vitamin-E analogue that protects against such an induced stress, was performed. Rat hippocampal or cortical cultured cells were exposed either to 2 microM FeSO(4) alone or in the presence of PIR, DHP, BRO, DPR, MCL or TRO. Cell survival (lactate-dehydrogenase measurements, 16 h incubation), intracellular peroxide production (DCF-fluorescence, 1 h incubation), lipoperoxidation (TBARS-fluorescence, 6 h incubation) and mitochondrial function (MTT-test, 16 h incubation) were assessed. PIR, DHP and TRO significantly protected cultures (P<0.05) against Fe(2+)-induced toxicity in a concentration-dependent manner. The EC(50s) of these compounds were 6, 12 and 19 microM, respectively, in hippocampal cells. For cortical cell cultures incubated in the presence of iron and PIR or DHP, EC(50s) were 5 and 6 microM respectively. All Hill coefficients were close to unity. BRO, MCL and DPR were not protective in any type of culture. The IC(50s) for the inhibition of MAO-A were 2, 2 and 0.2 microM for PIR, DHP and BRO, respectively. PIR, DHP and TRO, but not DPR, induced a significant decrease in both intracellular peroxide production and lipoperoxidation. They also improved mitochondrial function. These experiments show that PIR and DHP can protect hippocampal and cortical neurons against oxidative stress at pharmacologically relevant concentrations. This protective effect seems unrelated to inhibition of MAO-A, but possibly involves free radical scavenging. [1]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C14H16NO2BR
Molecular Weight
310.18634
Exact Mass
309.036
CAS #
63638-91-5
Related CAS #
63638-90-4 (HCl);63638-91-5;
PubChem CID
44571
Appearance
Off-white to light yellow solid powder
Density
1.386g/cm3
Boiling Point
404ºC at 760 mmHg
Flash Point
198.2ºC
Index of Refraction
1.588
LogP
3.999
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
2
Heavy Atom Count
18
Complexity
283
Defined Atom Stereocenter Count
0
InChi Key
WZXHSWVDAYOFPE-UHFFFAOYSA-N
InChi Code
InChI=1S/C14H16BrNO2/c1-17-11-6-10-7-13(9-2-4-16-5-3-9)18-14(10)12(15)8-11/h6-9,16H,2-5H2,1H3
Chemical Name
4-(7-bromo-5-methoxy-1-benzofuran-2-yl)piperidine
Synonyms
Brofaromine; 63638-91-5; Brofaremine; Consonar; Brofaromine [INN]; Brofaromina; Brofarominum; Brofarmine;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~250 mg/mL (~805.96 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 6.25 mg/mL (20.15 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 62.5 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 6.25 mg/mL (20.15 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 62.5 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 6.25 mg/mL (20.15 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 62.5 mg/mL clear DMSO stock solution to 900 μL corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.2238 mL 16.1192 mL 32.2383 mL
5 mM 0.6448 mL 3.2238 mL 6.4477 mL
10 mM 0.3224 mL 1.6119 mL 3.2238 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us