Size | Price | Stock | Qty |
---|---|---|---|
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
Purity: ≥98%
BRL-15572 (BRL-15,572; BRL-15572; BRL 15,572; BRL15,572) dihydrochloride salt is a potent and selective 5-HT1D receptor antagonist with important biological activity. It suppresses 5-HT1D with a pKi of 7.9.
Targets |
5-HT1D ( pKi = 7.9 ); 5-HT1A ( pKi = 7.7 ); 5-HT2B ( pKi = 7.4 ); 5-HT2A ( pKi = 6.6 ); 5-HT7 ( pKi = 6.3 )
|
||
---|---|---|---|
ln Vitro |
|
||
ln Vivo |
|
||
Enzyme Assay |
Despite only modest homology between h5-HT1B and h5-HT1D receptor amino acid sequences, these receptors display a remarkably similar pharmacology. To date there are few compounds which discriminate between these receptor subtypes and those with some degree of selectivity, such as ketanserin, have greater affinity for other 5-HT receptor subtypes. We now report on two compounds, SB-216641 (N-[3-(2-dimethylamino) ethoxy-4-methoxyphenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)-(1,1'-biphenyl)-4-carboxamide) and BRL-15572 3-[4-(3-chlorophenyl) piperazin-1-yl]-1,1-diphenyl-2-propanol), which display high affinity and selectivity for h5-HT1B and h5-HT1D receptors, respectively. In receptor binding studies on human receptors expressed in CHO cells, SB-216641 has high affinity (pKi = 9.0) for h5-HT1B receptors and has 25-fold lower affinity at h5-HT1D receptors. In contrast, BRL-15572 has 60-fold higher affinity for h5-HT1D (pKi = 7.9) than 5-HT1B receptors. Similar affinities for these compounds were determined on native tissue 5-HT1B receptors in guinea-pig striatum. Functional activities of SB-216641 and BRL-15572 were measured in a [35S]GTPgammaS binding assay and in a cAMP accumulation assay on recombinant h5-HT1B and h5-HT1D receptors. Both compounds were partial agonists in these high receptor expression systems, with potencies and selectivities which correlated with their receptor binding affinities. In the cAMP accumulation assay, results from pK(B) measurements on the compounds again correlated with receptor binding affinities (SB-216641, pK(B) = 9.3 and 7.3; BRL-15572, pK(B) = <6 and 7.1, for h5-HT1B and h5-HT1D receptors respectively). These compounds will be useful pharmacological agents to characterise 5-HT1B and 5-HT1D receptor mediated responses[1].
|
||
Cell Assay |
[35S]GTPγS binding studies. Studies on the binding of [35S]GTPγS are conducted in CHO cells that express either the h5-HT1B or h5-HT1D receptors. In summary, 1 × 106 cell membranes are preincubated in HEPES buffer (HEPES [20 mM], MgCl2 [3 mM], NaCl [100 mM], ascorbate [0.2 mM]) containing GDP (10 µ M), with or without BRL-15572, for 30 minutes at 30°C. A 100 pM assay concentration of [35S]GTPγS is added in 10 µL increments to initiate the reaction, which is then incubated for an additional 30 minutes at 30°C. The determination of non-specific binding is achieved by first adding unlabelled GTPγS (10 µM) and then adding cells. Whatman GF/B grade filters are used to quickly filter the reaction out, and five ice-cold HEPES buffer washes are then performed. Liquid scintillation spectroscopy is used to measure radioactivity.
|
||
Animal Protocol |
|
||
References |
[1]. Naunyn Schmiedebergs Arch Pharmacol. 1997 Sep;356(3):312-20. [2]. Naunyn Schmiedebergs Arch Pharmacol. 1997 Sep;356(3):321-7. [3]. Br J Pharmacol. 1999 Feb;126(3):607-12. [4]. Clin Exp Pharmacol Physiol. 2005 Oct;32(10):894-900. [5]. Clin Exp Pharmacol Physiol. 2007 Nov;34(11):1199-206. [6]. Naunyn Schmiedebergs Arch Pharmacol. 2004 Jul;370(1):46-53. |
||
Additional Infomation |
1. In the present study, we investigated how alloxan-induced diabetes affects the ability of 5-hydroxytryptamine (5-HT) to modulate bradycardia induced in vivo by electrical stimulation of the vagus nerve in pithed rats. We also analysed the type and/or subtype of 5-HT receptors involved. 2. Diabetes was induced in male Wistar rats with a single injection of alloxan (150 mg/kg, s.c.). Four weeks later, rats were anaesthetized, pretreated with atenolol and pithed. Electrical stimulation (3, 6 and 9 Hz) of the vagus nerve resulted in frequency dependent decreases in heart rate (HR). 3. In diabetic rats, intravenous bolus administration of high doses of 5-HT (100 and 200 microg/kg) increased the bradycardia induced by vagal electrical stimulation. Similarly, low doses (10 microg/kg) of the 5-HT(1/7) receptor agonist 5-carboxamidotryptamine (5-CT), increased vagally induced bradycardia. However, at high doses (50, 100 and 150 microg/kg), 5-CT reduced the bradycardia. Attenuation of the vagally induced bradycardia evoked by the higher doses of 5-CT was reproduced by L-694,247 (50 microg/kg), a selective agonist for the non-rodent 5-HT(1B) and 5-HT(1D) receptors. Enhancement of the vagally induced bradycardia elicited by low doses of 5-CT was reproduced by the selective 5-HT(1A) receptor agonist 8-hydroxydipropylaminotretalin hydrobromide (8-OH-DPAT; 50 microg/kg). These stimulatory and inhibitory actions on vagal stimulation-induced bradycardia in diabetic rats were also observed after administration of exogenous acetylcholine. 4. Vagally induced bradycardia in diabetic rats was not affected by administration of the selective 5-HT(2) receptor agonist alpha-methyl-5-HT (150 microg/kg), the selective 5-HT(3) receptor agonist 1-phenylbiguanide (150 microg/kg) or the selective 5-HT(1B) receptor agonist CGS-12066B (50 microg/kg). 5. Enhancement of the electrical stimulation-induced bradycardia in diabetic rats caused by 5-CT (10 microg/kg) or 8-OH-DPAT (50 microg/kg) was abolished by the selective 5-HT(2/7) receptor antagonist mesulergine (1 mg/kg) and the selective 5-HT(1A) receptor antagonist WAY-100,635 (100 microg/kg), respectively. Similarly, pretreatment with the non-selective 5-HT(1) receptor antagonist methiothepin (0.1 mg/kg) blocked the inhibitory effect of 5-CT (50 microg/kg) on the bradycardia induced by vagal electrical stimulation in diabetic rats. BRL-15572 (2 microg/kg), a selective 5-HT(1D) receptor antagonist, inhibited the action of L-694,247 (50 microg/kg), a selective agonist for the non-rodent 5-HT(1B) and 5-HT(1D) receptors, on the vagally induced bradycardia. 6. In conclusion, in the present study, experimental diabetes evoked changes in both the nature and 5-HT receptor types/subtypes involved in vagally induced bradycardia.[5]
It has previously been suggested that ergotamine produces external carotid vasoconstriction in vagosympathectomised dogs via 5-HT1B/1D receptors and alpha2-adrenoceptors. The present study has reanalysed this suggestion by using more selective antagonists alone and in combination. Fifty-two anaesthetised dogs were prepared for ultrasonic measurements of external carotid blood flow. The animals were divided into thirteen groups (n=4 each) receiving an i.v. bolus injection of, either physiological saline (0.3 ml/kg; control), or the antagonists SB224289 (300 microg/kg; 5-HT1B), BRL15572 (300 microg/kg; 5-HT1D), rauwolscine (300 microg/kg; alpha2), SB224289 + BRL15572 (300 microg/kg each), SB224289 + rauwolscine (300 microg/kg each), BRL15572 + rauwolscine (300 microg/kg each), rauwolscine (300 microg/kg) + prazosin (100 microg/kg; alpha1), SB224289 (300 microg/kg) + prazosin (100 microg/kg), SB224289 (300 microg/kg) + rauwolscine (300 microg/kg) + prazosin (100 microg/kg), SB224289 (300 microg/kg) + prazosin (100 microg/kg) + BRL44408 (1,000 microg/kg; alpha2A), SB224289 (300 microg/kg) + prazosin (100 microg/kg)+ imiloxan (1,000 microg/kg; alpha2B), or SB224289 (300 microg/kg) + prazosin (100 microg/kg) + MK912 (300 microg/kg; alpha2C). Each group received consecutive 1-min intracarotid infusions of ergotamine (0.56, 1, 1.8, 3.1, 5.6, 10 and 18 microg/min), following a cumulative schedule. In saline-pretreated animals, ergotamine induced dose-dependent decreases in external carotid blood flow without affecting arterial blood pressure or heart rate. These control responses were: unaffected by SB224289, BRL15572, rauwolscine or the combinations of SB224289 + BRL15572, BRL15572 + rauwolscine, rauwolscine + prazosin, SB224289 + prazosin, or SB224289 + prazosin + imiloxan; slightly blocked by SB224289 + rauwolscine; and markedly blocked by SB224289 + rauwolscine + prazosin, SB224289 + prazosin + BRL44408 or SB224289 + prazosin + MK912. Thus, the cranio-selective vasoconstriction elicited by ergotamine in dogs is predominantly mediated by 5-HT1B receptors as well as alpha2A/2C-adrenoceptor subtypes and, to a lesser extent, by alpha1-adrenoceptors.[6] |
Molecular Formula |
C25H29CL3N2O
|
|
---|---|---|
Molecular Weight |
479.87
|
|
Exact Mass |
478.13
|
|
CAS # |
1173022-77-9
|
|
Related CAS # |
BRL-15572 hydrochloride; 1173022-77-9
|
|
PubChem CID |
9891303
|
|
Appearance |
White to off-white solid powder
|
|
Boiling Point |
580.7ºC at 760 mmHg
|
|
Flash Point |
305ºC
|
|
Vapour Pressure |
2.51E-14mmHg at 25°C
|
|
LogP |
5.459
|
|
Hydrogen Bond Donor Count |
3
|
|
Hydrogen Bond Acceptor Count |
3
|
|
Rotatable Bond Count |
6
|
|
Heavy Atom Count |
31
|
|
Complexity |
451
|
|
Defined Atom Stereocenter Count |
0
|
|
SMILES |
0
|
|
InChi Key |
WPEXRXMQMPOHIO-UHFFFAOYSA-N
|
|
InChi Code |
InChI=1S/C25H27ClN2O.2ClH/c26-22-12-7-13-23(18-22)28-16-14-27(15-17-28)19-24(29)25(20-8-3-1-4-9-20)21-10-5-2-6-11-21;;/h1-13,18,24-25,29H,14-17,19H2;2*1H
|
|
Chemical Name |
3-[4-(3-chlorophenyl)piperazin-1-yl]-1,1-diphenylpropan-2-ol;dihydrochloride
|
|
Synonyms |
|
|
HS Tariff Code |
2934.99.9001
|
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment, avoid exposure to moisture. |
|
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
|
|||
---|---|---|---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.08 mg/mL (4.33 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.08 mg/mL (4.33 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.08 mg/mL (4.33 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. Solubility in Formulation 4: 30% Propylene glycol , 5% Tween 80 , 65% D5W: 20 mg/mL |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.0839 mL | 10.4195 mL | 20.8390 mL | |
5 mM | 0.4168 mL | 2.0839 mL | 4.1678 mL | |
10 mM | 0.2084 mL | 1.0419 mL | 2.0839 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.