BMS-986020

Alias: AM152; AM 152; AM-152; AP-3152 free acid; BMS-986020; BMS986020; BMS 986020
Cat No.:V3470 Purity: ≥98%
BMS-986020 (also known as AM152 and AP-3152 free acid) is a novel, potent and selective LPA1 (lysophosphatidic acid) antagonist.
BMS-986020 Chemical Structure CAS No.: 1257213-50-5
Product category: LPL Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes

Other Forms of BMS-986020:

  • BMS-1001 Sodium salt
  • BMS-986020 sodium
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

BMS-986020 (also known as AM152 and AP-3152 free acid) is a novel, potent and selective LPA1 (lysophosphatidic acid) antagonist. For the treatment of idiopathic pulmonary fibrosis, BMS-986020 is currently undergoing a Phase 2 clinical trial. BMS-986020 specifically inhibits the LPA receptor, which is involved in the binding of the signaling molecule lysophosphatidic acid. This molecule is involved in a complex range of biological functions, including the invasion of tumor cells, smooth muscle contraction, platelet aggregation, cell proliferation, and chemotaxis.

Biological Activity I Assay Protocols (From Reference)
Targets
BSEP ( IC50 = 4.8 μM ); MRP4 ( IC50 = 6.2 μM ); MDR3 ( IC50 = 7.5 μM ); LPA1
ln Vitro
In the lungs of healthy mice, bleomycin-treated mice, and IPF mice, the percent displacement at 0.1 nM is 18%, 24%, and 31%, respectively. The percentages of displacement at 10 nM are 73%, 76%, and 64%, in that order. As a translational research tool, [18F]BMT-083133, a radioligand that targets LPA1, is designed to measure lung LPA1 engagement of BMS-986020 through in vitro autoradiography (ARG)[4].
Cell Assay
Dulbecco's Modified Eagle Medium (DMEM) + GlutaMax supplemented with 0.4% fetal bovine serum, 37.5 mg/mL Ficoll 70, 25 mg/mL Ficoll 400, and 1% ascorbic acid was used to cultivate human lung fibroblasts in 48-well plates. The cells were stimulated in four replicates with either 1 ng/mL of transforming growth factor beta 1 (TGF-β1) or 20 µM LPA with or without BMS-986020 (0.01, 0.05, 0.1, 0.5, 1, or 5 µM) diluted in dimethyl sulfoxide (DMSO) or vehicle (0.05% DMSO). For twelve days, cells were grown at 37 °C in a 95% O2 and 5% CO2 environment. On days four and eight, the culture media were replaced. Until the biomarker measurements, supernatants were kept at −20 °C in storage. On Day 0 (before starting medication treatment) and Day 12, alamarBlue was utilized to measure cellular metabolism. Lactate dehydrogenase (LDH) release was measured on Days 4, 8, and 12.
References

[1]. Lysophospholipid receptors in drug discovery. Exp Cell Res. 2015 May 1;333(2):171-7.

[2]. LPA1 antagonists BMS-986020 and BMS-986234 for idiopathic pulmonary fibrosis: Preclinical evaluation of hepatobiliary homeostasis. European Respiratory Journal.

[3]. Randomized, Double-Blind, Placebo-Controlled, Phase 2 Trial of BMS-986020, a Lysophosphatidic Acid Receptor Antagonist for the Treatment of Idiopathic Pulmonary Fibrosis. Chest. 2018 Nov;154(5):1061-1069.

[4]. Autoradiographic evaluation of [18F]BMT-083133, a lysophosphatidic acid receptor 1 (LPA1) radioligand. The jornal of nuclear medicine.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C29H26N2O5
Molecular Weight
482.5271
Exact Mass
482.18
Elemental Analysis
C, 72.19; H, 5.43; N, 5.81; O, 16.58
CAS #
1257213-50-5
Related CAS #
BMS-986020 sodium; 1380650-53-2
Appearance
Solid powder
SMILES
CC1=NOC(=C1NC(=O)O[C@H](C)C2=CC=CC=C2)C3=CC=C(C=C3)C4=CC=C(C=C4)C5(CC5)C(=O)O
InChi Key
GQBRZBHEPUQRPL-LJQANCHMSA-N
InChi Code
InChI=1S/C29H26N2O5/c1-18-25(30-28(34)35-19(2)20-6-4-3-5-7-20)26(36-31-18)23-10-8-21(9-11-23)22-12-14-24(15-13-22)29(16-17-29)27(32)33/h3-15,19H,16-17H2,1-2H3,(H,30,34)(H,32,33)/t19-/m1/s1
Chemical Name
1-[4-[4-[3-methyl-4-[[(1R)-1-phenylethoxy]carbonylamino]-1,2-oxazol-5-yl]phenyl]phenyl]cyclopropane-1-carboxylic acid
Synonyms
AM152; AM 152; AM-152; AP-3152 free acid; BMS-986020; BMS986020; BMS 986020
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 97~125 mg/mL (201.0~259.1 mM)
Ethanol: ~97 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (4.31 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (4.31 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.0724 mL 10.3621 mL 20.7241 mL
5 mM 0.4145 mL 2.0724 mL 4.1448 mL
10 mM 0.2072 mL 1.0362 mL 2.0724 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT02068053 Completed Drug: [14C] BMS-986020 Immunosuppression For Disease Bristol-Myers Squibb March 2014 Phase 1
NCT02017730 Completed Drug: BMS-986020
Drug: [11C]BMT-136088
Immunology Bristol-Myers Squibb January 2014 Phase 1
NCT02227173 Completed Drug: BMS-986020
Drug: Montelukast
Drug-drug Interaction Study Bristol-Myers Squibb September 2014 Phase 1
NCT01766817 Completed Drug: BMS-986020
Drug: Placebo matching with
BMS-986020
Idiopathic Pulmonary Fibrosis Bristol-Myers Squibb January 31, 2013 Phase 2
NCT02101125 Completed Drug: BMS-986020
Drug: Rosuvastatin
Immunosuppression For Disease Bristol-Myers Squibb March 2014 Phase 1
Biological Data
  • BMS-986020


    Chronology of the LP field, LP and other lipid receptors, and overview of proximal LP signaling features.2015 May 1;333(2):171-7.

  • BMS-986020


    Disease mechanisms being accessed by LP-based drug discovery and compounds in clinical development.2015 May 1;333(2):171-7.

Contact Us Back to top