AZD-5991

Alias: AZD 5991; AZD-5991; AZD5991
Cat No.:V4341 Purity: ≥98%
AZD-5991 (AZD5991) is a novel, potent,rationally designed macrocyclic molecule and selectiveMCL-1inhibitor with anticancer activity.
AZD-5991 Chemical Structure CAS No.: 2143061-81-6
Product category: Bcl-2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
Other Sizes

Other Forms of AZD-5991:

  • AZD-5991 RACEMATE
  • AZD-5991 S-ENANTIOMER
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

AZD-5991 (AZD5991) is a novel, potent, rationally designed macrocyclic molecule and selective MCL-1 inhibitor with anticancer activity. With an IC50 of 0.7 nM in the FRET assay and a Kd of 0.17 nM in the surface plasmon resonance (SPR) assay, it inhibits MCL-1. The drug AZD5991, which is currently in clinical development, has a high affinity and selectivity for Mcl-1. By activating the Bak-dependent mitochondrial apoptotic pathway, AZD5991 binds directly to Mcl-1 and causes rapid apoptosis in cancer cells, most notably myeloma and acute myeloid leukemia. After a single well-tolerated dose, AZD5991 exhibits strong antitumor activity in vivo with complete tumor regression in a number of models of multiple myeloma and acute myeloid leukemia when used alone or in combination with bortezomib or venetoclax. A Phase I clinical trial (NCT03218683) has been started to evaluate AZD5991 in patients with hematological malignancies based on these encouraging data.

Biological Activity I Assay Protocols (From Reference)
Targets
Mcl-1 (IC50 = 0.7 nM); Mcl-1 (Kd = 0.17 nM)
ln Vitro
AZD5991 is a potent and direct inhibitor of Mcl-1 with high selectivity versus other Bcl-2 family proteins. Apoptosis is triggered quickly in cancer cells by AZD5991 by binding directly to Mcl-1 and activating the Bak-dependent mitochondrial apoptotic pathway, most notably in myeloma and acute myeloid leukemia (GI50 100nM) cells. Hematological cells are preferentially killed by AZD5991 in a panel of cancer-derived cell lines with hematological or solid tumor origins[1][3].
ln Vivo
After a single well-tolerated dose, AZD5991 exhibits strong antitumor activity in vivo with complete tumor regression in a number of models of multiple myeloma and acute myeloid leukemia when used alone or in combination with bortezomib or venetoclax. As shown by the cleavage of caspase-3 and PARP in these in vivo studies, AZD5991's cytotoxic activity closely correlates with the activation of the mitochondrial apoptotic pathway[1].
Cell Assay
MOLP-8 cells are treated with AZD5991 or DMSO ontrol for 30 min. The samples are then centrifuged, and the pellet is resuspended in ice-cold lysis buffer and incubated for 20 min.on ice with vortexing every 5 min. After centrifuging the samples, the protein concentration was measured. Before incubating with anti-Mcl-1 antibody overnight at 4 °C with rotation, samples are pre-cleared for 30 min at 4 °C using rotation and a 50% slurry of Protein A/G magnetic beads. After that, Protein A/G magnetic beads are added and rotated for 1 hour at 4 °C. Each IP pellet is given a 10% sample reducing agent addition before being washed four times with lysis buffer/PBS (1:1) and then being subjected to a western blotting analysis.
Animal Protocol
Mice and Rats[1] In mice, drugs (e.g., AZD5991; 10-100 mg/kg) are dosed intravenously in a volume of 5 mL/kg except for Venetoclax that is dosed orally in a volume of 10 mL/kg. One million MV4-11, five million MOLP-8, ten million NCI-H929 or five million OCI-AML3 cells are injected subcutaneously in the right flank of mice in a volume of 0.1 mL. In rats, AZD5991 (10-100 mg/kg) is dosed intravenously in a volume of 10 mL/kg. Ten million MV4-11 cells are injected subcutaneously in the right flank of rats in a volume of 0.1 mL. Tumor volumes (measured by caliper), animal body weight, and tumor condition are recorded twice weekly for the duration of the study. The tumor volume is calculated[1].
References

[1]. Nat Commun . 2018 Dec 17;9(1):5341.

[2]. Curr Opin Chem Biol . 2017 Aug:39:133-142.

[3] AACR Cancer Res. 2018, 78(13 Suppl):Abstract nr 302.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C35H34CLN5O3S2
Molecular Weight
672.2592
Exact Mass
671.18
Elemental Analysis
C, 62.53; H, 5.10; Cl, 5.27; N, 10.42; O, 7.14; S, 9.54
CAS #
2143061-81-6
Related CAS #
AZD-5991 Racemate;2143010-83-5;AZD-5991 (S-enantiomer);2143061-82-7
Appearance
Solid powder
SMILES
CC1=C2C(=NN1C)CSCC3=NN(C(=C3)CSC4=CC5=CC=CC=C5C(=C4)OCCCC6=C(N(C7=C6C=CC(=C27)Cl)C)C(=O)O)C
InChi Key
KBQCEQAXHPIRTF-UHFFFAOYSA-N
InChi Code
InChI=1S/C35H34ClN5O3S2/c1-20-31-29(38-40(20)3)19-45-17-22-15-23(41(4)37-22)18-46-24-14-21-8-5-6-9-25(21)30(16-24)44-13-7-10-26-27-11-12-28(36)32(31)33(27)39(2)34(26)35(42)43/h5-6,8-9,11-12,14-16H,7,10,13,17-19H2,1-4H3,(H,42,43)
Chemical Name
17-chloro-5,13,14,22-tetramethyl-28-oxa-2,9-dithia-5,6,12,13,22-pentazaheptacyclo[27.7.1.14,7.011,15.016,21.020,24.030,35]octatriaconta-1(36),4(38),6,11,14,16,18,20,23,29(37),30,32,34-tridecaene-23-carboxylic acid
Synonyms
AZD 5991; AZD-5991; AZD5991
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 100~250 mg/mL (148.8~371.9 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (3.09 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (3.09 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

View More

Solubility in Formulation 3: 2.08 mg/mL (3.09 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.


Solubility in Formulation 4: 2.08 mg/mL (3.09 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 5: ≥ 2.08 mg/mL (3.09 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

Solubility in Formulation 6: ≥ 2.08 mg/mL (3.09 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.4875 mL 7.4376 mL 14.8752 mL
5 mM 0.2975 mL 1.4875 mL 2.9750 mL
10 mM 0.1488 mL 0.7438 mL 1.4875 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT03218683 Terminated Drug: AZD5991 + Venetoclax
Drug: AZD5991
Relapsed or Refractory Acute
Myeloid Leukemia
(AML)
AstraZeneca August 2, 2017 Phase 1
Biological Data
  • AZD-5991

    Hematological cell lines are preferentially sensitive to AZD5991.

  • AZD-5991

    AZD5991 causes tumor regression in AML models.2018 Dec 17;9(1):5341.

  • AZD-5991

    AZD5991 exhibits potent anti-tumor efficacy in MM models.2018 Dec 17;9(1):5341.

Contact Us Back to top