yingweiwo

Azacitidine (Ladakamycin; 5-AzaC)

Alias: Vidaza; Abbreviations: 5AC; 5AZC. U 18496; U18496; 5-azacytidine; azacytidine; U-18496; ladakamycin. US brand names: Mylosar; Vidaza; 5-azacitidine;
Cat No.:V0404 Purity: ≥98%
5-Azacytidine (5AzaC; Ladakamycin; U-18496; Vidaza;Mylosar;5-AzaC) is an FDA approved anticancer drug bearing a pyrimidine nucleoside core and belongs to cytosine class of antimetabolites.
Azacitidine (Ladakamycin; 5-AzaC)
Azacitidine (Ladakamycin; 5-AzaC) Chemical Structure CAS No.: 320-67-2
Product category: DNA Methyltransferase
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
250mg
500mg
1g
2g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
InvivoChem's Azacitidine (Ladakamycin; 5-AzaC) has been cited by 2 publications
Purity & Quality Control Documentation

Purity: ≥98%

Purity: ≥98%

Product Description

5-Azacytidine (5AzaC; Ladakamycin; U-18496; Vidaza; Mylosar; 5-AzaC) is an FDA approved anticancer drug bearing a pyrimidine nucleoside core and belongs to cytosine class of antimetabolites. It acts as a DNA methyl transferase (DNMT) inhibitor.

Biological Activity I Assay Protocols (From Reference)
Targets
DNMT1; pyrimidine nucleoside analogue of cytidine; Nucleoside Antimetabolite; Autophagy
ln Vitro
Unmethylated CpG islands associated with a number of genes are partially or fully methylated in malignancies and can be reactivated by 5-Azacytidine [1]. 5-Azacytidine works as a mild inducer of erythroid differentiation of Friend erythroleukemia cells within the same dose range that influences DNA methyltransferase activity [2]. 5-Azacytidine inhibits L1210 cells with ID50 and ID90 values of 0.019 and ~0.15 μg/mL, respectively [3].
ln Vivo
TdR-3H incorporation was markedly decreased when rats were treated to 5-Azacytidine (100 mg/kg, i.p.) for two hours or longer [3].
We tested this hypothesis in an immunocompetent mouse model for ovarian cancer and found that in vivo, 5-Azacytidine (AZA) and α-difluoromethylornithine (DFMO), either alone or in combination, significantly increased survival, decreased tumor burden, and caused recruitment of activated (IFNγ+) CD4+ T cells, CD8+ T cells, and NK cells. The combination therapy had a striking increase in survival when compared to single agent treatment, despite a smaller difference in recruited lymphocytes. Instead, combination therapy led to a significant decrease in immunosuppressive cells such as M2 polarized macrophages and an increase in tumor-killing M1 macrophages. In this model, depletion of macrophages with a CSF1R-blocking antibody reduced the efficacy of AZA+DFMO treatment and resulted in fewer M1 macrophages in the tumor microenvironment. These observations suggest our novel combination therapy modifies macrophage polarization in the tumor microenvironment, recruiting M1 macrophages and prolonging survival[5].
Enzyme Assay
Treatment of Friend erythroleukemia cells with the antileukemic drugs 5-azacytidine and 5-aza-2'-deoxycytidine leads to rapid, time-dependent, and dose-dependent decrease of DNA methyltransferase activity and synthesis of markedly undermethylated DNA. Since this DNA is at least partially methylated in vivo and serves as an excellent substrate for methylation in vitro, hypomethylation of DNA in analog-treated cells appears to result from the loss of DNA methyltransferase, rather than from an inherent inability of 5-azacytosine- substituted DNA to serve as a methyl acceptor. Inhibition of DNA synthesis blocks the loss of DNA methyltransferase activity while inhibitors of RNA synthesis do not, suggesting that the analogs must be incorporated into DNA to mediate their effect on the enzyme, and that minor substitution of 5-azacytosine for cytosine in DNA (approximately 0.3%) suffices to inactivate more than 95% of the enzyme in the cell. Several lines of evidence link changes in the pattern of DNA modification with differentiation. In this regard, it is significant that 5-azacytidine and 5-aza-2'-deoxycytidine act as weak inducers of erythroid differentiation of Friend erythroleukemia cells in the same concentration range where they affect DNA methyltransferase activity. For differentiation to proceed, the cells must be washed free of the drugs. Less than 24 h later, normal levels of DNA methyltransferase activity are restored and within 48 h, DNA isolated from the cells is not detectably undermethylated. This may in part explain why 5-azacytidine and 5-aza-2'-deoxycytidine induce differentiation in less than 15% of the population despite their initial profound effect on DNA methylation[2].
Cell Assay
Recently, metabolic syndrome (MS) has gained attention in human and animal metabolic medicine. Insulin resistance, inflammation, hyperleptinemia, and hyperinsulinemia are critical to its definition. MS is a complex cluster of metabolic risk factors that together exert a wide range of effects on multiple organs, tissues, and cells in the body. Adipose stem cells (ASCs) are multipotent stem cell population residing within the adipose tissue that is inflamed during MS. Studies have indicated that these cells lose their stemness and multipotency during MS, which strongly reduces their therapeutic potential. They suffer from oxidative stress, apoptosis, and mitochondrial deterioration. Thus, the aim of this study was to rejuvenate these cells in vitro in order to improve their chondrogenic differentiation effectiveness. Pharmacotherapy of ASCs was based on resveratrol and 5-azacytidine pretreatment. We evaluated whether those substances are able to reverse aged phenotype of metabolic syndrome-derived ASCs and improve their chondrogenic differentiation at its early stage using immunofluorescence, transmission and scanning electron microscopy, real-time PCR, and flow cytometry. Obtained results indicated that 5-azacytidine and resveratrol modulated mitochondrial dynamics, autophagy, and ER stress, leading to the enhancement of chondrogenesis in metabolically impaired ASCs. Therefore, pretreatment of these cells with 5-azacytidine and resveratrol may become a necessary intervention before clinical application of these cells in order to strengthen their multipotency and therapeutic potential[4].
Animal Protocol
Mice were treated with 0.5 mg/kg 5-Azacytidine (AZA)/saline, Monday through Friday, every other week and continuous 2% DFMO in drinking water. 200ug of α-PD-1 or IgG was injected i.p. 4 times total on days 17, 20, 24, and 27 post i.p. injection of VDID8 cells. 200 ug of α-CSF1R or IgG was injected i.p. twice weekly beginning two weeks prior to VDID8 cell injection, and continuing throughout the duration of the experiment.[5]
Dissolved in 0.85% NaCl solution; 3 mg/kg; i.p. injection
BDF1 mice bearing lymphoid leukemia L1210
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Azacitidine is rapidly absorbed after subcutaneous administration. In adult patients with myelodysplastic syndrome given a single subcutaneous dose of 75 mg/m2 of azacitidine, the Cmax and Tmax were 750 ng/ml and 0.5 hours, respectively. Based on the area under the curve, the bioavailability of subcutaneous azacitidine relative to intravenous azacitidine is approximately 89%. In 21 patients with cancer given subcutaneous azacitidine, the AUC and Cmax were approximately dose-proportional between 25 and 100 mg/m2. Multiple subcutaneous or intravenous doses of azacitidine are not expected to result in drug accumulation.
Azacitidine and its metabolites are mainly excreted through urine. In five cancer patients given radioactive azacitidine intravenously, the cumulative urinary excretion was 85% of the radioactive dose. Fecal excretion accounted for less than 1% of administered radioactivity over three days. Following the subcutaneous administration of 14C-azacitidine, the mean excretion of radioactivity in urine was 50%.
In patients given an intravenous dose of azacitidine, the volume of distribution is 76 L.
Azacitidine has an apparent subcutaneous clearance of 167 L/hour in adults. In pediatric patients, the geometric mean clearance was 21.8 L/hour.
Metabolism / Metabolites
An in vitro study of azacitidine incubation in human liver fractions indicated that cytochrome P450 (CYP) enzymes do not participate in the metabolism of azacitidine. Azacitidine is metabolized through spontaneous hydrolysis and deamination mediated by cytidine deaminase.
An in vitro study of azacitidine incubation in human liver fractions indicated that azacitidine may be metabolized by the liver. The potential of azacitidine to inhibit cytochrome P450 (CYP) enzymes is not known.
Route of Elimination: Following IV administration of radioactive azacitidine to 5 cancer patients, the cumulative urinary excretion was 85% of the radioactive dose.
Fecal excretion accounted for <1% of administered radioactivity over three days. Mean excretion of radioactivity in urine following SC administration of 14C-azacitidine was 50%.
Half Life: Mean elimination half-life is approximately 4 hours.
Biological Half-Life
The mean half-life of azacitidine after subcutaneous administration is 41 minutes. The mean elimination half-life of azacitidine and its metabolites was about 4 hours for intravenous and subcutaneous administrations.
Toxicity/Toxicokinetics
Hepatotoxicity
In clinical trials, serum enzyme elevations occurred in up to 16% of patients on azacitidine therapy for cancer or myelodysplasia who had concurrent, underlying liver disease or liver metastases, but rarely in persons without a preexisting hepatic illness. In subsequent studies, liver adverse reactions attributed to azacitidine have rarely been reported, at least when it is given in conventional doses. Nevertheless, monitoring of serum enzyme levels is recommended in treating patients who have concurrent liver disease. Cases of clinically apparent liver injury attributed to azacitidine in patients without underlying liver disease have not been reported in the literature.
Likelihood score: E* (unproven but suspected cause of clinically apparent liver injury, particularly in persons with pre-existing liver disease).
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Most sources consider breastfeeding to be contraindicated during maternal antineoplastic drug therapy. It might be possible to breastfeed safely during intermittent azacitidine therapy with an appropriate period of breastfeeding abstinence; the manufacturer recommends an abstinence period of 1 week after the last dose. Chemotherapy may adversely affect the normal microbiome and chemical makeup of breastmilk. Women who receive chemotherapy during pregnancy are more likely to have difficulty nursing their infant.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
A telephone follow-up study was conducted on 74 women who received cancer chemotherapy at one center during the second or third trimester of pregnancy to determine if they were successful at breastfeeding postpartum. Only 34% of the women were able to exclusively breastfeed their infants, and 66% of the women reported experiencing breastfeeding difficulties. This was in comparison to a 91% breastfeeding success rate in 22 other mothers diagnosed during pregnancy, but not treated with chemotherapy. Other statistically significant correlations included: 1. mothers with breastfeeding difficulties had an average of 5.5 cycles of chemotherapy compared with 3.8 cycles among mothers who had no difficulties; and 2. mothers with breastfeeding difficulties received their first cycle of chemotherapy on average 3.4 weeks earlier in pregnancy. Of the 9 women who received a fluorouracil-containing regimen, 8 had breastfeeding difficulties.
Protein Binding
Not available.
References

[1]. Christman JK. 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002 Aug 12;21(35):5483-95.

[2]. Inhibition of DNA methyltransferase and induction of Friend erythroleukemia cell differentiation by 5-azacytidineand 5-aza-2'-deoxycytidine. J Biol Chem. 1982 Feb 25;257(4):2041-8.

[3]. Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia. Cancer Res. 1970 Nov;30(11):2760-9.

[4]. 5-Azacytidine and Resveratrol Enhance Chondrogenic Differentiation of Metabolic Syndrome-Derived Mesenchymal Stem Cells by Modulating Autophagy.Oxid Med Cell Longev. 2019 May 12;2019:1523140.

Additional Infomation
Azacitidine can cause cancer according to The World Health Organization's International Agency for Research on Cancer (IARC).
5-azacytidine is a white crystalline powder. (NTP, 1992)
5-azacytidine is an N-glycosyl-1,3,5-triazine that is 4-amino-1,3,5-triazin-2(1H)-one substituted by a beta-D-ribofuranosyl residue via an N-glycosidic linkage. An antineoplastic agent, it is used in the treatment of myeloid leukaemia. It has a role as an antineoplastic agent. It is a N-glycosyl-1,3,5-triazine and a nucleoside analogue. It is functionally related to a beta-D-ribose.
Azacitidine is a pyrimidine nucleoside analogue with anti-neoplastic activity. It differs from cytosine by the presence of nitrogen in the C5-position, key in its hypomethylating activity. Two main mechanisms of action have been proposed for azacitidine. One of them is the induction of cytotoxicity. As an analogue of cytidine, it is able to incorporate into RNA and DNA, disrupting RNA metabolism and inhibiting protein and DNA synthesis. The other one is through the inhibition of DNA methyltransferase, impairing DNA methylation. Due to its anti-neoplastic activity and its ability to inhibit methylation in replicating DNA, azacytidine has been used mainly used in the treatment of myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), two types of cancer characterized by the presence of aberrant DNA methylation. In May 2004, the FDA approved the use of azacitidine administered subcutaneously for the treatment of MDS of all French-American-British (FAB) subtypes. In January 2007, the FDA approved the intravenous administration of azacitidine. The use of oral azacitidine for the treatment of AML in patients in complete remission was approved by the FDA in September 2020.
Azacitidine is a Nucleoside Metabolic Inhibitor. The mechanism of action of azacitidine is as a Nucleic Acid Synthesis Inhibitor.
Azacitidine is a cytosine analogue and antineoplastic agent used in the therapy of myelodysplastic syndromes. Azacitidine is associated with a low rate of transient serum enzyme elevations during therapy and has not been convincingly implicated in cases of clinically apparent acute liver injury with jaundice.
Azacitidine has been reported in Streptomyces sparsogenes with data available.
Azacitidine is a pyrimidine nucleoside analogue of cytidine with antineoplastic activity. Azacitidine is incorporated into DNA, where it reversibly inhibits DNA methyltransferase, thereby blocking DNA methylation. Hypomethylation of DNA by azacitidine may activate tumor suppressor genes silenced by hypermethylation, resulting in an antitumor effect. This agent is also incorporated into RNA, thereby disrupting normal RNA function and impairing tRNA cytosine-5-methyltransferase activity. (NCI04)
Azacitidine is only found in individuals that have used or taken this drug. It is a pyrimidine nucleoside analogue that inhibits DNA methyltransferase, impairing DNA methylation. It is also an antimetabolite of cytidine, incorporated primarily into RNA. Azacytidine has been used as an antineoplastic agent. Azacitidine (5-azacytidine) is a chemical analogue of the cytosine nucleoside used in DNA and RNA. Azacitidine is thought to induce antineoplastic activity via two mechanisms; inhibition of DNA methyltransferase at low doses, causing hypomethylation of DNA, and direct cytotoxicity in abnormal hematopoietic cells in the bone marrow through its incorporation into DNA and RNA at high doses, resulting in cell death. As azacitidine is a ribonucleoside, it incoporates into RNA to a larger extent than into DNA. The incorporation into RNA leads to the dissembly of polyribosomes, defective methylation and acceptor function of transfer RNA, and inhibition of the production of protein. Its incorporation into DNA leads to a covalent binding with DNA methyltransferases, which prevents DNA synthesis and subsequent cytotoxicity.
A pyrimidine analogue that inhibits DNA methyltransferase, impairing DNA methylation. It is also an antimetabolite of cytidine, incorporated primarily into RNA. Azacytidine has been used as an antineoplastic agent.
Drug Indication
Azacitidine (for subcutaneous or intravenous use) is indicated for the treatment of adult patients with the following French-American-British (FAB) myelodysplastic syndrome (MDS) subtypes: refractory anemia (RA) or refractory anemia with ringed sideroblasts (RARS) (if accompanied by neutropenia or thrombocytopenia or requiring transfusions), refractory anemia with excess blasts (RAEB), refractory anemia with excess blasts in transformation (RAEB-T), and chronic myelomonocytic leukemia (CMMoL). Azacitidine is also indicated for the treatment of pediatric patients aged 1 month and older with newly diagnosed Juvenile Myelomonocytic Leukemia (JMML). Azacitidine (for oral use) is indicated for continued treatment of adult patients with acute myeloid leukemia (AML) who achieved first complete remission or complete remission with incomplete blood count recovery following intensive induction chemotherapy and are not able to complete intensive curative therapy.
Azacitidine Mylan is indicated for the treatment of adult patients who are not eligible for haematopoietic stem cell transplantation (HSCT) with: intermediate 2 and high risk myelodysplastic syndromes (MDS) according to the International Prognostic Scoring System (IPSS),chronic myelomonocytic leukaemia (CMML) with 10 29% marrow blasts without myeloproliferative disorder,acute myeloid leukaemia (AML) with 20 30% blasts and multi lineage dysplasia, according to World Health Organisation (WHO) classification,AML with > 30% marrow blasts according to the WHO classification.
Vidaza is indicated for the treatment of adult patients who are not eligible for haematopoietic stem cell transplantation (HSCT) with:  intermediate 2 and high-risk myelodysplastic syndromes (MDS) according to the International Prognostic Scoring System (IPSS),chronic myelomonocytic leukaemia (CMML) with 10 29 % marrow blasts without myeloproliferative disorder,acute myeloid leukaemia (AML) with 20 30 % blasts and multi-lineage dysplasia, according to World Health Organisation (WHO) classification. Vidaza is indicated for the treatment of adult patients aged 65 years or older who are not eligible for HSCT with AML with > 30% marrow blasts according to the WHO classification.
Azacitidine Accord is indicated for the treatment of adult patients who are not eligible for haematopoietic stem cell transplantation (HSCT) with: - intermediate-2 and high-risk myelodysplastic syndromes (MDS) according to the International Prognostic Scoring System (IPSS),- chronic myelomonocytic leukaemia (CMML) with 10-29 % marrow blasts without myeloproliferative disorder,- acute myeloid leukaemia (AML) with 20-30 % blasts and multi-lineage dysplasia, according to World Health Organisation (WHO) classification,- AML with > 30% marrow blasts according to the WHO classification.
Azacitidine betapharm is indicated for the treatment of adult patients who are not eligible for haematopoietic stem cell transplantation (HSCT) with: intermediate-2 and high-risk myelodysplastic syndromes (MDS) according to the International Prognostic Scoring System (IPSS),chronic myelomonocytic leukaemia (CMML) with 10 % to 29 % marrow blasts without myeloproliferative disorder,acute myeloid leukaemia (AML) with 20 % to 30 % blasts and multi-lineage dysplasia, according to World Health Organization (WHO) classification,AML with > 30 % marrow blasts according to the WHO classification.
Onureg is indicated as maintenance therapy in adult patients with acute myeloid leukaemia (AML) who achieved complete remission (CR) or complete remission with incomplete blood count recovery (CRi) following induction therapy with or without consolidation treatment and who are not candidates for, including those who choose not to proceed to, hematopoietic stem cell transplantation (HSCT).
Azacitidine Celgene is indicated for the treatment of adult patients who are not eligible for haematopoietic stem cell transplantation (HSCT) with: intermediate 2 and high-risk myelodysplastic syndromes (MDS) according to the International Prognostic Scoring System (IPSS),chronic myelomonocytic leukaemia (CMML) with 10 29 % marrow blasts without myeloproliferative disorder,acute myeloid leukaemia (AML) with 20 30 % blasts and multi-lineage dysplasia, according to World Health Organisation (WHO) classification,AML with > 30% marrow blasts according to the WHO classification.
Treatment of myelodysplastic syndrome (including juvenile myelomonocytic leukaemia), Treatment of acute myeloid leukaemia
Mechanism of Action
Azacitidine (5-azacytidine) is a chemical analogue of the cytosine nucleoside present in DNA and RNA. It induces antineoplastic activity by inhibiting DNA methyltransferase at low doses and inducing cytotoxicity by incorporating itself into RNA and DNA at high doses. Covalent binding to DNA methyltransferase results in DNA hypomethylation and prevents DNA synthesis. On the other hand, the incorporation of azacitidine into RNA and DNA leads to cytotoxicity as follows: Following cellular uptake, azacitidine is phosphorylated by uridine-cytidine kinase to form 5-azacytidine monophosphate. Afterwards, pyrimidine monophosphate and diphosphate kinases phosphorylate 5-azacytidine monophosphate to form 5-azacytidine diphosphate and triphosphate, respectively. Azacitidine triphosphate is able to incorporate into RNA, disrupting RNA metabolism and protein synthesis. The reduction of azacytidine diphosphate leads to the formation of 5-aza-deoxycytidine diphosphate, which is then phosphorylated to form 5-azadeoxycitidine triphosphate, a compound able to incorporate into DNA and inhibit DNA synthesis. As a ribonucleoside, azacitidine incorporates into RNA to a larger extent than into DNA. Incorporating into RNA leads to the disassembly of polyribosomes, defective methylation and acceptor function of transfer RNA, and the inhibition of protein production, resulting in cell death. During the S-phase of the cell cycle, azacitidine exhibits the highest toxicity; however, the predominant mechanism of cytotoxicity has not been elucidated. The cytotoxic effects of azacitidine cause the death of rapidly dividing cells, including cancer cells that are no longer responsive to normal growth control mechanisms. Non-proliferating cells are relatively insensitive to azacitidine. It is believed that azacitidine exerts its antineoplastic effects through direct cytotoxicity on abnormal hematopoietic cells in the bone marrow.
Telomerase activation is thought to be a critical step in cellular immortality and oncogenesis. Several reagents including differentiation-inducing and antineoplastic agents are known to inhibit telomerase activity, although the molecular mechanisms through which they inhibit telomerase activity remain unclear. Demethylating reagents have recently been used as potential antineoplastic drugs for some types of cancers including those of the prostate. In the present study, we examined the effect of the demethylating reagent 5-azacytidine (5-aza-CR) on telomerase activity using cells of two prostate cancer cell lines, DU-145 and TSU-PR1. 5-aza-CR treatment significantly reduced telomerase activity in TSU-PR1 cells, but not in DU-145 cells, although growth inhibition was observed to a similar extent in both cell lines. Reverse transcription-PCR analyses revealed that inhibition of telomerase activity was accompanied by down-regulation of telomerase catalytic subunit (hTERT) mRNA expression. Transient expression assays showed that 5-aza-CR repressed the transcriptional activity of the hTERT promoter and that the E-box within the core promoter was responsible for this down-regulation. Western blot analyses revealed that 5-aza-CR reactivated p16 expression and repressed c-Myc expression in TSU-PR1 cells but not in DU-145 cells. Overexpression of p16 in TSU-PR1 cells led to significant repression of c-Myc transcription. These findings suggest that 5-aza-CR inhibits telomerase activity via transcriptional repression of hTERT, in which p16 and c-Myc may play a key role.
Cellular differentiation is controlled by a variety of factors including gene methylation, which represses particular genes as cell fate is determined. The incorporation of 5-azacytidine (5azaC) into DNA in vitro prevents methylation and thus can alter cellular differentiation pathways. Human bone marrow fibroblasts and MG63 cells treated with 5azaC were used as models of osteogenic progenitors and of a more mature osteoblast phenotype, respectively. The capacity for differentiation of these cells following treatment with glucocorticoids was investigated. 5azaC treatment led to significant expression of the osteoblastic marker alkaline phosphatase in MG63 osteosarcoma cells, which was further augmented by glucocorticoids; however, in human marrow fibroblasts alkaline phosphatase activity was only observed in glucocorticoid-treated cultures. MG63 cells represent a phenotype late in the osteogenic lineage in which demethylation is sufficient to induce alkaline phosphatase activity. Marrow fibroblasts are at an earlier stage of differentiation and require stimulation with glucocorticoids. In contrast, the expression of osteocalcin, an osteoblastic marker, was unaffected by 5azaC treatment, suggesting that regulation of expression of the osteocalcin gene does not involve methylation. These models provide novel approaches to the study of the control of differentiation in the marrow fibroblastic system.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C8H12N4O5
Molecular Weight
244.2
Exact Mass
244.08
Elemental Analysis
C, 39.35; H, 4.95; N, 22.94; O, 32.76
CAS #
320-67-2
Related CAS #
320-67-2
PubChem CID
9444
Appearance
Crystals from methanol
Density
2.1±0.1 g/cm3
Boiling Point
534.5±60.0 °C at 760 mmHg
Melting Point
226-232 °C (dec.)(lit.)
Flash Point
277.0±32.9 °C
Vapour Pressure
0.0±3.2 mmHg at 25°C
Index of Refraction
1.823
LogP
-1.99
Hydrogen Bond Donor Count
4
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
2
Heavy Atom Count
17
Complexity
384
Defined Atom Stereocenter Count
4
SMILES
OC[C@H]1O[C@@H](N2C(N=C(N)N=C2)=O)[C@H](O)[C@@H]1O
InChi Key
NMUSYJAQQFHJEW-KVTDHHQDSA-N
InChi Code
InChI=1S/C8H12N4O5/c9-7-10-2-12(8(16)11-7)6-5(15)4(14)3(1-13)17-6/h2-6,13-15H,1H2,(H2,9,11,16)/t3-,4-,5-,6-/m1/s1
Chemical Name
4-amino-1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-1,3,5-triazin-2(1H)-one
Synonyms
Vidaza; Abbreviations: 5AC; 5AZC. U 18496; U18496; 5-azacytidine; azacytidine; U-18496; ladakamycin. US brand names: Mylosar; Vidaza; 5-azacitidine;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 48 mg/mL (196.6 mM)
Water:<1 mg/mL
Ethanol:<1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (8.52 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (8.52 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (8.52 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 30% propylene glycol, 5% Tween 80, 65% D5W:30mg/mL

Solubility in Formulation 5: 20 mg/mL (81.90 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.0950 mL 20.4750 mL 40.9500 mL
5 mM 0.8190 mL 4.0950 mL 8.1900 mL
10 mM 0.4095 mL 2.0475 mL 4.0950 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT06190067 Recruiting Drug: Azacitidine Plus PD-1 therapy Relapsed Classic Hodgkin Lymphoma
Refractory Classic Hodgkin Lymphoma
Navy General Hospital, Beijing October 30, 2023 Phase 2
NCT03466294 Active, not recruiting Drug: Azacitidine and Venetoclax Acute Myeloid Leukemia University of Colorado, Denver May 15, 2018 Phase 2
NCT04891068 Recruiting Drug: Azacitidine Breast Cancer Female
Breast Cancer Invasive
University of Illinois at Chicago January 10, 2022 Phase 2
NCT04187703 Recruiting Drug: 5-azacytidine
Drug: Decitabine
Myelodysplastic Syndromes
MDS/MPN Crossover Syndromes
Benjamin Tomlinson November 16, 2020 Early Phase 1
Contact Us