yingweiwo

L-Arginine

Alias: L-arginine; arginine; 74-79-3; L-(+)-Arginine; (S)-2-Amino-5-guanidinopentanoic acid; L-Arg; H-Arg-OH; L(+)-Arginine;
Cat No.:V11575 Purity: ≥98%
L-Arginine is a substrate for NO production by endothelial nitric oxide synthase (eNOS).
L-Arginine
L-Arginine Chemical Structure CAS No.: 74-79-3
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1g
5g
Other Sizes

Other Forms of L-Arginine:

  • DL-Arginine
  • Arginine glutamate
  • L-Arginine butanoate ((S)-(+)-Arginine butanoate)
  • Arginine caprate
  • Arginine HCl
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
L-Arginine is a substrate for NO production by endothelial nitric oxide synthase (eNOS). L-Arginine is transported by a family of cationic amino acid (AA) transporters to vascular smooth muscle cells, where it is metabolized to nitric oxide (NO), polyamines, or L-proline.
Biological Activity I Assay Protocols (From Reference)
Targets
Endogenous Metabolite; Microbial Metabolite; eNOS
ln Vitro
L-Arginine (Arg) is classified as an essential amino acid for birds, carnivores and young mammals and a conditionally essential amino acid for adults. It is converted by arginase to L-ornithine, a precursor of polyamines and urea, which is important in the urea cycle. Arg serves as a precursor for creatine, which plays an essential role in the energy metabolism of muscle, nerve and testis and accounts for Arg catabolism and for the synthesis of agmatine and proteins. Via its ability to increase growth hormone secretion it influences immune function. Depending on nutritional status and developmental stage, normal plasma Arg concentrations in humans and animals range from 95 to 250 micromol/l. Systemic or oral Arg administration has been shown to improve cardiovascular function and reduce myocardial ischemia in coronary artery disease patients. It reduces blood pressure and renal vascular resistance in essential hypertensive patients with normal or insufficient renal function. Although Arg plasma concentrations are not altered in hypercholesterolemic individuals, oral or intravenous Arg administration can reverse endothelial dysfunction in hypercholesterolemic patients and in cigarette smokers. The main importance of Arg is attributed to its role as a precursor for the synthesis of nitric oxide (NO), a free radical molecule that is synthesized in all mammalian cells from L-Arg by NO synthase (NOS). NO appears to be a major form of the endothelium-derived relaxing factor (EDRF). NO and EDRF share similar chemical and pharmacological properties and are derived from the oxidation of a terminal guanidine group of L-Arg. Various mechanisms have been implicated in the defect in vascular relaxation. These include, increased diffusional barrier for NO, L-Arg depletion, altered levels of reactive oxygen, inactivation of NO by superoxide anions (O2-). The independent reactions of O2-, NO and their reaction yielding peroxynitrite are critical in the initiation and maintenance of the atherosclerotic state and contribute to the defect in vasorelaxation. NO also plays a role as a neurotransmitter, mediator of immune response and as signaling molecule. The NO synthesized by iNOS in macrophages contributes to their cytotoxic activity against tumor cells, bacteria and protozoa. Our aim here is to review on some amino acids with high functional priority such as Arg and to define their effective activity in human health and pathologies.[1]
ln Vivo
L-arginine can be utilized in animal modeling to build animal pancreatitis models. L-Arginine is a NO-producing substrate of endothelial nitric oxide synthase (eNOS) and can be metabolized into nitric oxide (NO), polyamines or L-proline to stimulate inflammation. L-Arginine can also selectively destroy pancreatic acinar cells, resulting in acute necrotizing pancreatitis.
When male rats were given single i.p. injection of 500 mg of L-arginine/100 g body weight, the pancreatic acinar cells were destroyed selectively, without any morphological change of Langerhans' islets. As early as 24 hours after the injection, loss of basophilia, zymogen degranulation, and vacuolar and necrotic changes of the acinar cells were noted. After 3 days, fibroblastic activity and atrophy of pancreatic lobuli were evident. Early electron microscopic findings were changes of the endoplasmic reticulum, such as partial dilatation or vacuolation of the cisternae, usually with loss of ribosomes attached to the membrane. The effect of arginine excess may be ascribed to imbalance of amino acids and subsequent to decrease of protein synthesis in the acinar cells. In the course of this study, fat necrosis with marked infiltration of leucocytes was observed in adipose tissues in peripancreatic, epididymal, omental and retroperitoneal areas. This change correlated closely with the marked necrosis of the pancreas. An increase in the level of lipase in the blood was also demonstrated.[4]
Animal Protocol
Nitric oxide, a product of nitric oxide synthase activity, relaxes vascular smooth muscle and elevates brain blood flow. We evaluated the importance of eNOS to cerebral blood flow augmentation after L-arginine infusion and increases in flow after eNOS upregulation in SV-129 mice. Blood flow was measured by laser-Doppler flowmetry before and after L-arginine infusion (450 mg/kg during a 15-minute period) or measured by 14C-iodoamphetamine indicator fractionation or 14C-iodoantipyrine tissue equilibration techniques. rCBF increased by 26% (laser Doppler flowmetry) after L-arginine infusion but did not change in mutant mice deficient in eNOS expression. After eNOS upregulation by chronic simvastatin treatment (2 mg/kg subcutaneously, daily for 14 days), L-arginine amplified and sustained the hyperemia (38%) and increased absolute brain blood flow from 86 +/- 7 to 119 +/- 10 mL/100 g per minute. Furthermore, pretreatment with simvastatin enhanced blood flow within ischemic brain tissue after middle cerebral artery occlusion. Together, these findings suggest that eNOS activity is critical for blood flow augmentation during acute L-arginine infusion, and chronic eNOS upregulation combined with L-arginine administration provides a novel strategy to elevate cerebral blood flow in the normal and ischemic brain.[3]
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Absorbed from the lumen of the small intestine into the enterocytes. Absorption is efficient and occurs by an active transport mechanism.
Metabolism / Metabolites
Some metabolism of L-arginine takes place in the enterocytes. L-arginine not metabolized in the enterocytes enters the portal circulation from whence it is transported to the liver, where again some portion of the amino acid is metabolized.
PRODUCT OF OXIDATIVE DEAMINATION OR TRANSAMINATION OF L-ARGININE IS ALPHA-KETO-GAMMA-GUANIDOVALERIC ACID; PRODUCT OF DECARBOXYLATION IS AGMATINE. PATHWAYS & PRODUCTS OF METABOLISM: ARGININE YIELDS ORNITHINE + UREA; ARGININE YIELDS CITRULLINE + NH3; ARGININE + GLYCINE YIELDS GUANIDOACETIC ACID + ORNITHINE /FROM TABLE/
Some metabolism of L-arginine takes place in the enterocytes. L-arginine not metabolized in the enterocytes enters the portal circulation from whence it is transported to the liver, where again some portion of the amino acid is metabolized.
Toxicity/Toxicokinetics
Toxicity Summary
Many of supplemental L-arginine's activities, including its possible anti-atherogenic actions, may be accounted for by its role as the precursor to nitric oxide or NO. NO is produced by all tissues of the body and plays very important roles in the cardiovascular system, immune system and nervous system. NO is formed from L-arginine via the enzyme nitric oxide synthase or synthetase (NOS), and the effects of NO are mainly mediated by 3,'5' -cyclic guanylate or cyclic GMP. NO activates the enzyme guanylate cyclase, which catalyzes the synthesis of cyclic GMP from guanosine triphosphate or GTP. Cyclic GMP is converted to guanylic acid via the enzyme cyclic GMP phosphodiesterase. NOS is a heme-containing enzyme with some sequences similar to cytochrome P-450 reductase. Several isoforms of NOS exist, two of which are constitutive and one of which is inducible by immunological stimuli. The constitutive NOS found in the vascular endothelium is designated eNOS and that present in the brain, spinal cord and peripheral nervous system is designated nNOS. The form of NOS induced by immunological or inflammatory stimuli is known as iNOS. iNOS may be expressed constitutively in select tissues such as lung epithelium. All the nitric oxide synthases use NADPH (reduced nicotinamide adenine dinucleotide phosphate) and oxygen (O2) as cosubstrates, as well as the cofactors FAD (flavin adenine dinucleotide), FMN (flavin mononucleotide), tetrahydrobiopterin and heme. Interestingly, ascorbic acid appears to enhance NOS activity by increasing intracellular tetrahydrobiopterin. eNOS and nNOS synthesize NO in response to an increased concentration of calcium ions or in some cases in response to calcium-independent stimuli, such as shear stress. In vitro studies of NOS indicate that the Km of the enzyme for L-arginine is in the micromolar range. The concentration of L-arginine in endothelial cells, as well as in other cells, and in plasma is in the millimolar range. What this means is that, under physiological conditions, NOS is saturated with its L-arginine substrate. In other words, L-arginine would not be expected to be rate-limiting for the enzyme, and it would not appear that supraphysiological levels of L-arginine which could occur with oral supplementation of the amino acid^would make any difference with regard to NO production. The reaction would appear to have reached its maximum level. However, in vivo studies have demonstrated that, under certain conditions, e.g. hypercholesterolemia, supplemental L-arginine could enhance endothelial-dependent vasodilation and NO production.
References

[1]. I. Arginine. Biomed Pharmacother. 2002 Nov;56(9):439-45.

[2]. Administration of the nitric oxide synthase inhibitor NG-methyl-L-arginine hydrochloride (546C88) by intravenous infusion for up to 72 hours can promote the resolution of shock in patients with severe sepsis: results of a randomized, double-blind, placebo-controlled multicenter study (study no. 144-002). Crit Care Med. 2004 Jan;32(1):1-12.

[3]. Endothelial nitric oxide synthase-dependent cerebral blood flow augmentation by L-arginine after chronic statin treatment. J Cereb Blood Flow Metab. 2000 Apr;20(4):709-17.

[4]. Effects of injecting excess arginine on rat pancreas. J Nutr. 1984 Mar;114(3):467-71.

[5]. Effects of curcumin on oxidative stress, inflammation and apoptosis in L-arginine induced acute pancreatitis in mice. Heliyon. 2019 Aug 27;5(8):e02222.

Additional Infomation
Therapeutic Uses
EXPTL USE: IN MICE, L-ARGININE-HCL HAD AN INHIBITORY EFFECT ON MURINE SARCOMA VIRUS-MOLONEY & C3H BREAST ADENOCARCINOMA TUMOR SYSTEMS.
EXPTL USE: EXPTL DIETS GIVEN 10 DAYS AFTER WALKER 256 CARCINOSARCOMA CELLS INOCULATED INTO RATS, RESULTED IN LOWER TUMOR WEIGHTS.
EXPTL USE: L-ARGININE-HCL INCR IN VITRO MOTILITY IN SPECIMENS OF HUMAN SEMEN EXHIBITING SUBNORMAL MOTILITY. EFFECT WAS DOSE DEPENDENT.
EXPTL USE: ARGININE (1% IN DIET) GIVEN TO RATS INCR THYMIC SIZE & PREVENTED THYMIC INVOLUTION WHICH OCCURS WITH INJURY. ARGININE PROMOTED WOUND HEALING IN RATS.
For more Therapeutic Uses (Complete) data for (L)-ARGININE (6 total), please visit the HSDB record page.
Pharmacodynamics
Studies have shown that is has improved immune responses to bacteria, viruses and tumor cells; promotes wound healing and regeneration of the liver; causes the release of growth hormones; considered crucial for optimal muscle growth and tissue repair.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C6H14N4O2
Molecular Weight
174.2010
Exact Mass
174.111
Elemental Analysis
C, 41.37; H, 8.10; N, 32.16; O, 18.37
CAS #
74-79-3
Related CAS #
DL-Arginine;7200-25-1;L-Arginine (L-glutamate);4320-30-3;L-Arginine butanoate;80407-72-3; 74-79-3; 2485-55-4 (caprate); 4320-30-3 (glutamate); 1119-34-2 (HCl)
PubChem CID
6322
Appearance
White to off-white solid powder
Density
1.5±0.1 g/cm3
Boiling Point
367.6±52.0 °C at 760 mmHg
Melting Point
222 °C (dec.)(lit.)
Flash Point
176.1±30.7 °C
Vapour Pressure
0.0±1.8 mmHg at 25°C
Index of Refraction
1.601
LogP
-1.79
Hydrogen Bond Donor Count
4
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
5
Heavy Atom Count
12
Complexity
176
Defined Atom Stereocenter Count
1
SMILES
C(C[C@@H](C(=O)O)N)CN=C(N)N
InChi Key
ODKSFYDXXFIFQN-BYPYZUCNSA-N
InChi Code
InChI=1S/C6H14N4O2/c7-4(5(11)12)2-1-3-10-6(8)9/h4H,1-3,7H2,(H,11,12)(H4,8,9,10)/t4-/m0/s1
Chemical Name
(2S)-2-amino-5-(diaminomethylideneamino)pentanoic acid
Synonyms
L-arginine; arginine; 74-79-3; L-(+)-Arginine; (S)-2-Amino-5-guanidinopentanoic acid; L-Arg; H-Arg-OH; L(+)-Arginine;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ~50 mg/mL (~287.03 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 100 mg/mL (574.05 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with sonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 5.7405 mL 28.7026 mL 57.4053 mL
5 mM 1.1481 mL 5.7405 mL 11.4811 mL
10 mM 0.5741 mL 2.8703 mL 5.7405 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT01485757 Terminated Drug: L-arginine Heart Transplant University of Michigan 2011-07 Phase 1
NCT05855330 Recruiting Drug: Arginine Hydrochloride COVID-19 Emory University 2024-01-08 Phase 2
NCT00513617 Completed Drug: Arginine
Drug: Placebo
Anemia, Sickle Cell UCSF Benioff Children's Hospital Oakland 2004-06 Phase 2
NCT01142219 Completed Drug: L-arginine
Drug: Placebo
Sickle Cell Disease Hospital de Clinicas de Porto Alegre 2006-09 Phase 3
NCT04535427 Unknown status Drug: L-arginine
Drug: Placebo
Rheumatoid Arthritis RenJi Hospital 2021-01-01 Phase 2
Contact Us