My cart
In the shopping cart is not goods, to choose and buy!
  • Product Name
  • Size
  • Quantity
  • Amount
    Selected items : 0 pieces Total : CHECK OUT()

    Market Price:

    This product is for research use only, not for human use. We do not sell to patients.
    Number: - + Pieces(InventoryPieces)
    InvivoChem Cat #: V0305
    CAS #: 328543-09-5Purity ≥98%

    Description: AG14361 (AG-14361) is a novel, potent and selective inhibitor of poly (ADP-ribose) polymerase-1 (PARP1) with potential anticancer activity. It inhibits PARP1 with a Ki of<5 nM in a cell-free assay. It shows potent antiproliferative activity against various cancer cells and high in vivo antitumor efficacy as well.

    References: J Natl Cancer Inst. 2004 Jan 7;96(1):56-67; Clin Cancer Res. 2004 Feb 1;10(3):881-9; Clin Cancer Res. 2005 Dec 1;11(23):8449-57.

    Customer Validation
    Official Supplier of
    • VE
    • OF
    • YALE
    • hhmi
    • 香港大学
    Publications Citing InvivoChem Products
    • Physicochemical and Storage Information
    • Protocol
    • Quality Control Documentation
    • Related Biological Data
    • Customer Review
    Molecular Weight (MW)320.39
    CAS No.328543-09-5
    Storage-20℃ for 3 years in powder form
    -80℃ for 2 years in solvent
    Solubility (In vitro)DMSO: 12 mg/mL (37.5 mM)
    Water: <1 mg/mL
    Ethanol: <1 mg/mL
    Solubility (In vivo)4% DMSO+ddH2O: 2mg/mL

    AG14361; AG 14361; AG-14361

    Chemical Name: 1-(4-((dimethylamino)methyl)phenyl)-8,9-dihydro-2,7,9a-triazabenzo[cd]azulen-6(7H)-one.


    InChi Code: InChI=1S/C19H20N4O/c1-22(2)12-13-6-8-14(9-7-13)18-21-16-5-3-4-15-17(16)23(18)11-10-20-19(15)24/h3-9H,10-12H2,1-2H3,(H,20,24)

    SMILES Code: O=C1C2=C3C(N=C(C4=CC=C(CN(C)C)C=C4)N3CCN1)=CC=C2 

    • Molarity Calculator
    • Dilution Calculator
    • The molarity calculator equation

      Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

      • Mass
      • Concentration
      • Volume
      • Molecular Weight *
      • =
      • ×
      • ×
    • The dilution calculator equation

      Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

      This equation is commonly abbreviated as: C1V1 = C2V2

      • Concentration (start)
      • ×
      • Volume (start)
      • =
      • Concentration (final)
      • ×
      • Volume (final)
      • ×
      • =
      • ×
      • C1
      • V1
      • C2
      • V2
    In Vitro

    In vitro activity: AG14361 is at least 1000-fold more potent than the benzamides. The IC50 for AG14361 is 29 nM in permeabilized SW620 cells and 14 nM in intact SW620 cells. Crystallographic analysis of AG14361 bound to the catalytic domain of chicken PARP-1 shows that the tricyclic ring system of AG14361 is located in a pocket composed of amino acid residues Trp861, His862, Gly863, Tyr896, Phe897, Ala898, Lys903, Ser904, Tyr907, and Glu988. AG14361 forms important hydrogen bonds with Ser904 and Gly863 and a water-mediated hydrogen bond with Glu988. AG14361-induced growth inhibition is not attributed to PARP-1-related effects because maximal PARP-1 inhibition is observed at much lower concentrations (≤1 μM) than the GI50. AG14361 at 0.4 μM does not affect cancer cell gene expression or growth, but it increases the antiproliferative activity of temozolomide and topotecan, and inhibits recovery from potentially lethal γ-radiation damage in LoVo cells by 73%. In addition, 0.4 μM AG14361 does not substantially alter gene expression as shown by microarray analysis. A 17-hour exposure of A549 cells to 0.4 μM AG14361 does not change the expression of the 6800 genes. Thus, although 0.4 μM AG14361 inhibits cellular PARP-1 activity by more than 85%, it essentially does not change gene expression and cell proliferation, indicating that the cellular effects of this low concentration of AG14361 are specific for PARP-1 inhibition. Higher, growth-inhibitory concentrations of AG14361 affects gene expression, but these effects are not likely to be related to PARP-1 inhibition because cell proliferation is affected equally in PARP-/- and PARP-1+/+ cells. AG14361 is rapidly absorbed into the bloodstream and distributed to the tumor and liver with lower concentrations detected in the brain. Tissue-to-plasma concentration ratio indicates that AG14361 is retained in tumor tissue over time in both xenograft models, with tumor concentrations (≥15 μM for 2 hours) in excess of that required to inhibit PARP-1 activity in vitro.

    Kinase Assay: The activity of full-length recombinant human PARP-1 is measured in a reaction mixture containing 20 nM PARP-1, 500 μM NAD+ plus [32P]NAD+ (0.1–0.3 μCi per reaction mixture), and activated calf thymus DNA (10 μg/mL) at 25oC; the reaction is terminated after 4 minutes by adding ice-cold 10% (wt/vol) trichloroacetic acid. The reaction product [32P]ADP-ribose incorporated into acid-insoluble material is deposited onto Whatman GF/C glass fiber filters with a Bio-Dot microfiltration apparatus and quantified with a PhosphorImager. Inhibition of PARP-1 activity by AG14361 at 0–600 nM is measured, and the Ki for AG14361 is calculated by nonlinear regression analysis.

    Cell Assay: LoVo and SW620 colorectal cancer cells and A549 non–small-cell lung carcinoma cells are maintained in RPMI-1640 medium containing 10% fetal calf serum. Cell growth inhibition is estimated in exponentially growing LoVo, A549, and SW620 cells in 96-well plates. Cells are exposed to AG14361 (0–20 μM) alone or in the presence of 400 μM temozolomide. After 5 days of culture, these cells are fixed with 10% trichloroacetic acid and stained with sulforhodamine B. The concentration of temozolomide, topotecan, and AG14361 alone or in combination that inhibits growth by 50% (GI50) is calculated from computer-generated curves. Recovery from potentially lethal damage is measured in confluent LoVo cell cultures arrested in G1 phase to mimic the radiation-resistant quiescent cell population in tumors. Such cells are exposed to 8 Gy of γ-irradiation and then harvested and plated for colony formation assay immediately or maintained as growth-arrested confluent cultures for a 4-hour or 24-hour recovery period before harvesting and plating for the colony formation assay. Where indicated, 0.4 μM AG14361 is added 30 minutes before irradiation and is present in the recovery incubation.

    In VivoAG14361 treatment before irradiation statistically significantly increases the sensitivity to radiation therapy of mice bearing LoVo xenografts. AG14361 statistically significantly increases blood flow in xenografts and thus potentially increases drug delivery to tumor xenografts. In vivo, nontoxic doses of AG14361 increases the delay of LoVo xenograft growth induced by irinotecan, x-irradiation, or temozolomide by 2- to 3-fold. Coadministration of AG14361 with temozolomide statistically significantly increases temozolomide activity against LoVo xenografts, with the tumor growth delay being increased from 3 days to 9 days by AG14361 at 5 mg/kg and to 10 days by AG14361 at 15 mg/kg. The combination of AG14361 and temozolomide causes complete regression of SW620 xenograft tumors. PARP-1 activity, detected by pharmacodynamic assay, in SW620 xenografts is inhibited by more than 75% for at least 4 hours after intraperitoneal administration of AG14361 (10 mg/kg), consistent with the concentration of AG14361 persisting in the tumor.
    Animal modelSW620 or LoVo xenografts in CD-1 nude mice
    Formulation & DosageDissolved in DMSO;  5 or 15 mg/kg ; i.p. injection.

    J Natl Cancer Inst. 2004 Jan 7;96(1):56-67; Clin Cancer Res. 2004 Feb 1;10(3):881-9; Clin Cancer Res. 2005 Dec 1;11(23):8449-57.

    These protocols are for reference only. InvivoChem does not independently validate these methods.


    Effect of AG14361 on topo I poison-induced growth inhibition and cytotoxicity in PARP-1+/+, PARP-1−/−, and human leukemia cell lines. Clin Cancer Res. 2005 Dec 1;11(23):8449-57.



    Effect of AG14361 on camptothecin-stabilized cleavable complex induction and removal. Clin Cancer Res. 2005 Dec 1;11(23):8449-57.



    Repair of camptothecin-induced DNA single-strand breaks in K562 cells in the presence or absence of AG14361. K562 cells were exposed to 30 nmol/L camptothecin for 30 minutes followed by repair in drug-free medium (white columns) or medium containing 0.4 μmol/L AG14361 (black columns) for 0, 10, or 20 minutes. DNA strand breaks were measured by alkaline elution. Relative elution was calculated by comparison with DMSO or 0.4 μmol/L AG14361 alone control as appropriate. Columns, mean of three independent experiments; bars, SE. Clin Cancer Res. 2005 Dec 1;11(23):8449-57.


      Home Prev Next Last page / pices


      Your information is safe with us. * Required Fields.
      Products are for research use only;  We do not sell to patients
      Tel: 1-708-310-1919
      Fax: 1-708-557-7486
      Subscribe to our E-newsletter
      • Name*
      • *
      • E-mail*
      • *
      • instructions:
      • *
      Copyright 2020 InvivoChem LLC | All Rights Reserved
      Do you confirm the receipt?