Adenosine 5'-monophosphate monohydrate

Cat No.:V32143 Purity: ≥98%
Adenosine 5'-monophosphate monohydrate is an adenosine A1 receptor agonist (activator).
Adenosine 5'-monophosphate monohydrate Chemical Structure CAS No.: 18422-05-4
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
500mg
1g
Other Sizes

Other Forms of Adenosine 5'-monophosphate monohydrate:

  • Adenosine phosphate
  • Adenosine 5'-monophosphate disodium (5'-Adenine nucleotide disodium salt (5'-AMP-NA2))
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Adenosine 5'-monophosphate monohydrate is an adenosine A1 receptor agonist (activator). Adenosine 5'-monophosphate monohydrate has significant anti-viral effect against HSV-1 and HSV-2.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
Adenosine 5'-monophosphate monohydrate is an A1 receptor agonist [1]. Adenosine 5'-monophosphate monohydrate (5'-AMP) at doses ranging from 25 to 400 μM caused minimal cytotoxicity in RAW264.7 cells. Adenosine 5'-monophosphate monohydrate dramatically reduced TNF-α and IL-6 mRNA expression in RAW264.7 cells. At 400 μM, adenosine 5'-monophosphate monohydrate had the strongest inhibitory effect on TNF-α and IL-6 mRNA levels. Exposing cells to adenosine 5'-monophosphate monohydrate decreases NF-κB p65 recruitment to TNF-α, IL-6, and IL-1β transcription promoters [2].
ln Vivo
Adenosine 5'-monophosphate monohydrate (5'-AMP) treatment dramatically raised the amounts of adenosine in the liver of C57BL/6J mice. In comparison, the survival rates of mice treated with adenosine 5'-monophosphate monohydrate (n=15) were 100% (8 h) and 93.3% (24 h), whereas the survival rates of mice treated with PBS (n=15) were 60% (8 h) and 33.3% (24 h). When comparing the adenosine 5'-monophosphate monohydrate group to the vehicle group, there was a substantial decrease in the levels of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). In the 5'-adenosine monophosphate monohydrate group, there was a decrease in the area and severity of necrosis as well as a reduction in the infiltration of inflammatory cells [2].
References
[1]. Rittiner JE, et al. AMP is an adenosine A1 receptor agonist. J Biol Chem. 2012 Feb 17;287(8):5301-9.
[2]. Zhan Y, et al. Adenosine 5'-monophosphate ameliorates D-galactosamine/lipopolysaccharide-induced liver injury through an adenosine receptor-independent mechanism in mice. Cell Death Dis. 2014 Jan 9;5:e985.
[3]. Ayisi NK, et al. Comparison of the antiviral effects of 5-methoxymethyldeoxyuridine-5'-monophosphate with adenine arabinoside-5'-monophosphate. Antiviral Res. 1983 Sep;3(3):161-74
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C10H14N5O7P
Molecular Weight
347.2212
CAS #
18422-05-4
Related CAS #
Adenosine monophosphate;61-19-8;Adenosine monophosphate-13C10,15N5 disodium;Adenosine 5'-monophosphate disodium;4578-31-8;Adenosine 5'-monophosphate-13C disodium;Adenosine 5'-monophosphate-d2 disodium;Adenosine-5'-monophosphate-15N5 disodium
SMILES
P(=O)(O[H])(O[H])OC([H])([H])[C@]1([H])[C@]([H])([C@]([H])([C@]([H])(N2C([H])=NC3=C(N([H])[H])N=C([H])N=C23)O1)O[H])O[H]
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ~5 mg/mL (~13.69 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 5.26 mg/mL (14.40 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with sonication (<60°C).

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.8800 mL 14.4001 mL 28.8002 mL
5 mM 0.5760 mL 2.8800 mL 5.7600 mL
10 mM 0.2880 mL 1.4400 mL 2.8800 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top