A-803467

Alias: A-803467; A 803467; A803467
Cat No.:V1649 Purity: ≥98%
A-803467 (A803467;A 803467) is a novel, potent and selective NaV1.8 sodium channel blocker with potential analgesic effects.
A-803467 Chemical Structure CAS No.: 944261-79-4
Product category: Sodium Channel
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

A-803467 (A803467; A 803467) is a novel, potent and selective NaV1.8 sodium channel blocker with potential analgesic effects. It inhibits NaV1.8 sodium channel with an IC50 of 8 nM, and exhibits >100-fold more selectivity over human Nav1.2, 1.3, 1.5 and 1.7. A-803467 inhibits hNaV1.8, hNaV1.3, hNaV1.7, hNaV1.5 and hNaV1.2 channels with IC50 values of 8, 2450, 6740, 7340 and 7380 nM, respectively. A-803467 affects multiple biophysical characteristics of the canonical cardiac Nav1.5 channel and our data can be used to study potential applications of A-803467 as an antiarrhythmic drug. A-803467 attenuates spinal neuronal activity in neuropathic rats. A-803467 also attenuates neuropathic and inflammatory pain in the rat.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
A-803467 reverses the multidrug resistance mediated by ABCG2 in a selective and significant manner. In cell lines transfected with ABCG2, A-803467 (7.5 μM) considerably amplifies the cytotoxicity of mitoxantrone and topotecan. MX build-up in cells transfected with ABCG2. At varying time intervals, A-803467 (7.5 μM; 0~120 minutes) substantially inhibits the intracellular [3H]-MX efflux from ABCG2-transfected cells. A-803467 increases ABCG2's ATPase activity[1].
ln Vivo
In male NCR nude mice, A-803467 (35 mg/kg; po) exhibits no discernible toxicity[1]. When A-803467 and topotecan are combined, the growth of tumors in mice implanted with H460/MX20 cells that overexpress ABCG2 is greatly reduced. Restoring the sensitivity of cancers overexpressing the ABCG2 transporter to topotecan is accomplished by -803467, but tumors lacking ABCG2 expression are not significantly affected[1].
Animal Protocol
Animal/Disease Models: Nude mice[1]
Doses: 35 mg/kg
Route of Administration: Po
Experimental Results: demonstrated no noticeable toxicity in the male NCR nude mice.
References
[1]. Anreddy N, et al. A-803467, a tetrodotoxin-resistant sodium channel blocker, modulates ABCG2-mediated MDR in vitro and in vivo. Oncotarget. 2015;6(36):39276-39291.
[2]. Jarvis MF, et al. A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proc Natl Acad Sci U S A. 2007;104(20):8520-8525.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C19H16CLNO4
Molecular Weight
357.79
CAS #
944261-79-4
Related CAS #
944261-79-4
SMILES
ClC1C([H])=C([H])C(=C([H])C=1[H])C1=C([H])C([H])=C(C(N([H])C2C([H])=C(C([H])=C(C=2[H])OC([H])([H])[H])OC([H])([H])[H])=O)O1
Synonyms
A-803467; A 803467; A803467
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 72 mg/mL (201.2 mM)
Water:<1 mg/mL
Ethanol: 11 mg/mL (30.7 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (6.99 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (6.99 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

View More

Solubility in Formulation 3: 30% PEG400+0.5% Tween80+5% Propylene glycol : 30 mg/mL


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.7949 mL 13.9747 mL 27.9494 mL
5 mM 0.5590 mL 2.7949 mL 5.5899 mL
10 mM 0.2795 mL 1.3975 mL 2.7949 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top