yingweiwo

JB170

Alias: 2705844-82-0; CHEMBL5278315; 4-((9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl)amino)-N-(2-(2-(2-(2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamido)ethoxy)ethoxy)ethyl)-2-methoxybenzamide; SCHEMBL25163855; EX-A7164; BDBM50609429; 4-[[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino]-N-[2-[2-[2-[[2-[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxyacetyl]amino]ethoxy]ethoxy]ethyl]-2-methoxybenzamide;
Cat No.:V51923 Purity: ≥98%
JB170 is a potent and specific PROTAC-mediated degrader of AURORA-A (DC50=28 nM) formed by linking Alisertib to the Cereblon ligand Thalidomide.
JB170
JB170 Chemical Structure CAS No.: 2705844-82-0
Product category: Aurora Kinase
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
JB170 is a potent and specific PROTAC-mediated degrader of AURORA-A (DC50=28 nM) formed by linking Alisertib to the Cereblon ligand Thalidomide. JB170 preferentially binds AURORA-A (EC50=193 nM) over AURORA-B (EC50=1.4μM). JB170-mediated S-phase arrest is caused by AURORA-A depletion. JB170 has excellent inhibitory ability against the non-catalytic functions of AURORA-A kinase.
Biological Activity I Assay Protocols (From Reference)
Targets
Aurora A 28 nM (DC50) Aurora A 99 nM (Kd) Aurora A 193 nM (EC50) Cereblon
ln Vitro
JB170 (1 μM; 24-72 hours; MV4-11 cells) decreases the survival of cancer cells via mediating the depletion of Aurora-A [1]. AURORA-A levels are lowered by JB170 (0.01-10 μM; 6 hours; MV4-11 cells) [1]. JB170 (0.5 μM; 12 hours; MV4-11 cells) inhibits or slows the advancement of the S phase [1]. JB170 (0.5 μM; 0-72 hours; MV4-11 cells) exclusively targets AURORA-A to trigger apoptosis[1]. JB170 (0.1 μM; 0-9 hours; IMR5 cells) exhibits a quick AURORA-A depletion. In comparison to AURORA-A, JB170 (0~1 μM; 6 hours; MV4-11 cells) was significantly diminished in the mutants. In MV4-11 cells, JB170 (0.1 μM; 18 hours) does not cause AURORA-A activation. JB170 (0~1 μM; 24 hours; IMR5 cells) significantly eliminates the depletion of AURORA-AT217D. JB170 (1 μM; 4 days; IMR5 cells) mediates the reduction of Aurora-A, which prevents the survival of cancer cells. By lowering AURORA-A mRNA levels, JB170 (IMR5 cells) lowers AURORA-A levels [1].
Enzyme Assay
Isothermal titration calorimetry[1]
All titrations were performed on a Nano ITC calorimeter at 25 °C. The titrations of the binary complexes (AURORA-A into JB170 and CEREBLON-TBD into JB170) were performed as reverse titrations. Protein concentrations were determined spectroscopically at 280 nm using calculated extinction coefficients and a Thermo Scientific NanoDrop spectrophotometer and a buffer of 25 mM HEPES pH 7.5, 200 mM NaCl, 0.5 mM TCEP, 5% glycerol was used. For AURORA-A, concentrations in the injector (between 57 and 110 µM) had to be optimized due to protein stability issues matching JB170 concentrations between 1.0 and 10.0 µM. Values were calculated from four titrations. Best conditions were achieved at 110 µM AURORA-A and 10 µM JB170. For the CEREBLON (TBD) titration concentrations between 88 and 100 µM were used for the protein and 2.0 and 3.5 µM for JB170. Dissociation constants were calculated from three independent titrations.
Titrations for the ternary complexes were determined as previously described41. Briefly, CEREBLON(TBD) at 0.1 µM was titrated as described above. The binary complex remained in the calorimeter and the excess of solution after the titration was removed using a syringe. AURORA-A (110 µM) was titrated into the binary complex which had a JB170 concentration of 3.2 µM and 2.8 µM in two independent titration experiments. All data were fitted using a single binding site model in NanoAnalyse software to obtain Kd values and thermodynamic binding parameters.
Cell Assay
Cell Viability Assay[1]
Cell Types: MV4-11 cells
Tested Concentrations: 1 µM
Incubation Duration: 24-72 hrs (hours)
Experimental Results: After 72 hrs (hours), the number of viable cells was 32% of control levels.

Western Blot Analysis[1]
Cell Types: MV4-11 cells
Tested Concentrations: 0.01~10 μM
Incubation Duration: 6 hrs (hours)
Experimental Results: Substantial degradation was observed at 100 nM and 1 µM.

Apoptosis Analysis[1]
Cell Types: MV4-11 cells
Tested Concentrations: 0.5 µM
Incubation Duration: 0~72 hrs (hours)
Experimental Results: Apoptosis was exclusively caused by targeting AURORA-A.

Cell Cycle Analysis[1]
Cell Types: MV4-11 cells
Tested Concentrations: 0.5 µM
Incubation Duration: 12 hrs (hours)
Experimental Results: Delayed or arrested S-phase progression.
References

[1]. PROTAC-mediated degradation reveals a non-catalytic function of AURORA-A kinase. Nat Chem Biol. 2020;16(11):1179-1188.

Additional Infomation
The mitotic kinase AURORA-A is essential for cell cycle progression and is considered a priority cancer target. Although the catalytic activity of AURORA-A is essential for its mitotic function, recent reports indicate an additional non-catalytic function, which is difficult to target by conventional small molecules. We therefore developed a series of chemical degraders (PROTACs) by connecting a clinical kinase inhibitor of AURORA-A to E3 ligase-binding molecules (for example, thalidomide). One degrader induced rapid, durable and highly specific degradation of AURORA-A. In addition, we found that the degrader complex was stabilized by cooperative binding between AURORA-A and CEREBLON. Degrader-mediated AURORA-A depletion caused an S-phase defect, which is not the cell cycle effect observed upon kinase inhibition, supporting an important non-catalytic function of AURORA-A during DNA replication. AURORA-A degradation induced rampant apoptosis in cancer cell lines and thus represents a versatile starting point for developing new therapeutics to counter AURORA-A function in cancer.[1]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C48H44CLFN8O11
Molecular Weight
963.36
Exact Mass
962.28
Elemental Analysis
C, 59.84; H, 4.60; Cl, 3.68; F, 1.97; N, 11.63; O, 18.27
CAS #
2705844-82-0
PubChem CID
153835264
Appearance
Light yellow to yellow solid powder
Density
1.49±0.1 g/cm3(Predicted)
LogP
3.7
Hydrogen Bond Donor Count
4
Hydrogen Bond Acceptor Count
16
Rotatable Bond Count
19
Heavy Atom Count
69
Complexity
1870
Defined Atom Stereocenter Count
0
InChi Key
GYKNPXCQINZRLL-UHFFFAOYSA-N
InChi Code
InChI=1S/C48H44ClFN8O11/c1-65-35-7-4-6-33(50)41(35)43-32-21-27(49)9-11-29(32)42-26(23-53-43)24-54-48(57-42)55-28-10-12-30(37(22-28)66-2)44(61)52-16-18-68-20-19-67-17-15-51-39(60)25-69-36-8-3-5-31-40(36)47(64)58(46(31)63)34-13-14-38(59)56-45(34)62/h3-12,21-22,24,34H,13-20,23,25H2,1-2H3,(H,51,60)(H,52,61)(H,54,55,57)(H,56,59,62)
Chemical Name
4-[[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino]-N-[2-[2-[2-[[2-[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxyacetyl]amino]ethoxy]ethoxy]ethyl]-2-methoxybenzamide
Synonyms
2705844-82-0; CHEMBL5278315; 4-((9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-benzo[c]pyrimido[4,5-e]azepin-2-yl)amino)-N-(2-(2-(2-(2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamido)ethoxy)ethoxy)ethyl)-2-methoxybenzamide; SCHEMBL25163855; EX-A7164; BDBM50609429; 4-[[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino]-N-[2-[2-[2-[[2-[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxyacetyl]amino]ethoxy]ethoxy]ethyl]-2-methoxybenzamide;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : 100 mg/mL (103.80 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (2.60 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.0380 mL 5.1902 mL 10.3803 mL
5 mM 0.2076 mL 1.0380 mL 2.0761 mL
10 mM 0.1038 mL 0.5190 mL 1.0380 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us