4-Phenylbutyric acid

Alias: 4-Phenylbutyric acid AI3 12065 AI312065AI3-12065
Cat No.:V9618 Purity: ≥98%
4-Phenylbutyric acid (4-PBA) is a histone deacetylase (HDAC) and endoplasmic reticulum stress (ERS) inhibitor that may be utilized in study/research of diseases like cancer and infection.
4-Phenylbutyric acid Chemical Structure CAS No.: 1821-12-1
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
2g
5g
10g
25g
Other Sizes

Other Forms of 4-Phenylbutyric acid:

  • Sodium Phenylbutyrate (4-PBA sodium)
  • 4-Phenylbutyric acid-d11 (4-PBA-d11; Benzenebutyric acid-d11)
  • 4-Phenylbutyric acid-d5 (4-PBA-d5; Benzenebutyric acid-d5)
  • 4-Phenylbutyric acid-d2 (4-PBA-d2; Benzenebutyric acid-d2)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description
4-Phenylbutyric acid (4-PBA) is a histone deacetylase (HDAC) and endoplasmic reticulum stress (ERS) inhibitor that may be utilized in study/research of diseases like cancer and infection.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
At a concentration of 2 mM, the HDAC inhibitor 4-phenylbutyric acid (4-PBA) stops the growth of NSCLC cell lines. Phenylbutyric acid and ciglitazone together can improve cancer cell growth inhibition [1]. 4-ASFV infection is inhibited by phenylbutyric acid (0–5 mM) in a dose-dependent manner. In addition to preventing ASFV-induced H3K9/K14 hypoacetylation, benzoenebutyric acid also suppresses late protein synthesis. Together, phenylbutyric acid and enrofloxacin prevent ASFV replication [2]. When bafilomycin A1 was added, LC3II accumulated; however, 4-phenylbutyric acid dramatically decreased this accumulation. Phenylbutyric acid counteracted the 48-hour decline in p62 levels caused by LPS stimulation. After 48 hours, the percentage of AVO cells induced by LPS rose, whereas 4-phenylbutyric acid markedly reduced this percentage. Particularly, following treatment with phenylbutyric acid, the proportion of cells exhibiting AVO dropped from 61.6% to 53.1%, indicating that 4-phenylbutyric acid suppresses autophagy induced by lipopolysaccharide (LPS). The positive control for autophagy inhibition employed in this study was bafilomycin A1. The percentage of LPS-induced AVO cells was decreased by bafilomycin A1 treatment. In ATG7 knockdown, there was no phenylbutyric acid treatment-induced decrease in OC area or fusion index. Phenylbutyric acid's inhibitory effect on LPS-induced effects is totally eliminated when NF-κB is inhibited using BAY 11-7082 and JSH23, which also lowers LC3 II levels following LPS stimulation [3].
ln Vivo
LPS significantly decreased bone volume (BV/TV), trabecular thickness (Tb. Th), and bone mineral density (BMD) as compared to PBS alone. Trabecular space (Tb. Sp.) increased. LPS-induced bone loss is decreased by 4-phenylbutyric acid (4-PBA). 4-BMD, BV/TV, and Tb. Th were all elevated after phenylbutyric acid treatment. besides decreasing the rise in Tb in comparison to LPS alone. Sp., but when phenylbutyric acid was administered to mice alone, no alterations were seen. Phenylbutyric acid treatment of LPS-treated mice also resulted in a considerable decrease in OC.S/BS as measured by TRAP staining. However, OC.N/BS tended to decline in mice treated with LPS and phenylbutyric acid, albeit not in a statistically significant way. According to these findings, phenylbutyric acid causes OC in LPS-treated mice to shrink in size as opposed to increasing in number. In line with these results, phenylbutyric acid therapy of LPS-injected mice resulted in a decrease in blood CTX-1, a marker of bone resorption in vivo that was enhanced by LPS treatment. In contrast to LPS alone, phenylbutyric acid therapy did not substantially alter serum levels of osteocalcin and ALP, two indicators of bone formation in vivo. Moreover, phenylbutyric acid can lessen the rise in serum MCP-1 that is brought on by LPS, suggesting that it can lessen systemic inflammation brought on by LPS [3].
References
[1]. Chang TH, et al. Enhanced growth inhibition by combination differentiation therapy with ligands of peroxisome proliferator-activated receptor-gamma and inhibitors of histone deacetylase in adenocarcinoma of the lung. Clin Cancer Res. 2002 Apr;8(4):1206-12
[2]. Frouco G, et, al. Sodium phenylbutyrate abrogates African swine fever virus replication by disrupting the virus-induced hypoacetylation status of histone H3K9/K14. Virus Res. 2017 Oct 15;242:24-29.
[3]. Park HJ, et al. 4-Phenylbutyric acid protects against lipopolysaccharide-induced bone loss by modulating autophagy in osteoclasts. Biochem Pharmacol. 2018 May;151:9-17
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C10H12O2
Molecular Weight
164.2
Exact Mass
164.0837
CAS #
1821-12-1
Related CAS #
Sodium 4-phenylbutyrate;1716-12-7;4-Phenylbutyric acid-d11;358730-86-6;4-Phenylbutyric acid-d5;64138-52-9;4-Phenylbutyric acid-d2;461391-24-2
SMILES
O=C(O)CCCC1=CC=CC=C1
Chemical Name
4-Phenylbutyric acid
Synonyms
4-Phenylbutyric acid AI3 12065 AI312065AI3-12065
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~609.01 mM)
H2O : ~2 mg/mL (~12.18 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (15.23 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (15.23 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (15.23 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 33.33 mg/mL (202.98 mM) in 20% HP-β-CD in Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 6.0901 mL 30.4507 mL 60.9013 mL
5 mM 1.2180 mL 6.0901 mL 12.1803 mL
10 mM 0.6090 mL 3.0451 mL 6.0901 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top